![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coskpi | GIF version |
Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
Ref | Expression |
---|---|
coskpi | ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9322 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
2 | 2cn 9053 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
3 | picn 14922 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
4 | mul12 8148 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) | |
5 | 2, 3, 4 | mp3an23 1340 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
6 | 1, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
7 | 6 | fveq2d 5558 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π)))) |
8 | cos2kpi 14947 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | |
9 | zre 9321 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
10 | pire 14921 | . . . . . . . . . . 11 ⊢ π ∈ ℝ | |
11 | remulcl 8000 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ) | |
12 | 9, 10, 11 | sylancl 413 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ) |
13 | 12 | recnd 8048 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ) |
14 | cos2t 11893 | . . . . . . . . 9 ⊢ ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) | |
15 | 13, 14 | syl 14 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) |
16 | 7, 8, 15 | 3eqtr3rd 2235 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1) |
17 | 12 | recoscld 11867 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ) |
18 | 17 | recnd 8048 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ) |
19 | 18 | sqcld 10742 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ) |
20 | mulcl 7999 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) | |
21 | 2, 19, 20 | sylancr 414 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) |
22 | ax-1cn 7965 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
23 | subadd 8222 | . . . . . . . . 9 ⊢ (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) | |
24 | 22, 22, 23 | mp3an23 1340 | . . . . . . . 8 ⊢ ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
25 | 21, 24 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
26 | 16, 25 | mpbid 147 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))) |
27 | 2t1e2 9135 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
28 | df-2 9041 | . . . . . . 7 ⊢ 2 = (1 + 1) | |
29 | 27, 28 | eqtr2i 2215 | . . . . . 6 ⊢ (1 + 1) = (2 · 1) |
30 | 26, 29 | eqtr3di 2241 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1)) |
31 | 2ap0 9075 | . . . . . . . 8 ⊢ 2 # 0 | |
32 | 2, 31 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
33 | mulcanap 8684 | . . . . . . 7 ⊢ ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) | |
34 | 22, 32, 33 | mp3an23 1340 | . . . . . 6 ⊢ (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
35 | 19, 34 | syl 14 | . . . . 5 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
36 | 30, 35 | mpbid 147 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1) |
37 | sq1 10704 | . . . 4 ⊢ (1↑2) = 1 | |
38 | 36, 37 | eqtr4di 2244 | . . 3 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2)) |
39 | 1re 8018 | . . . 4 ⊢ 1 ∈ ℝ | |
40 | sqabs 11226 | . . . 4 ⊢ (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) | |
41 | 17, 39, 40 | sylancl 413 | . . 3 ⊢ (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) |
42 | 38, 41 | mpbid 147 | . 2 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1)) |
43 | abs1 11216 | . 2 ⊢ (abs‘1) = 1 | |
44 | 42, 43 | eqtrdi 2242 | 1 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 − cmin 8190 # cap 8600 2c2 9033 ℤcz 9317 ↑cexp 10609 abscabs 11141 cosccos 11788 πcpi 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ioc 9959 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-sin 11793 df-cos 11794 df-pi 11796 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |