ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coskpi GIF version

Theorem coskpi 12929
Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.)
Assertion
Ref Expression
coskpi (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)

Proof of Theorem coskpi
StepHypRef Expression
1 2t1e2 8873 . . . . . . 7 (2 · 1) = 2
2 df-2 8779 . . . . . . 7 2 = (1 + 1)
31, 2eqtr2i 2161 . . . . . 6 (1 + 1) = (2 · 1)
4 zcn 9059 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
5 2cn 8791 . . . . . . . . . . 11 2 ∈ ℂ
6 picn 12868 . . . . . . . . . . 11 π ∈ ℂ
7 mul12 7891 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
85, 6, 7mp3an23 1307 . . . . . . . . . 10 (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
94, 8syl 14 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
109fveq2d 5425 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π))))
11 cos2kpi 12893 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
12 zre 9058 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
13 pire 12867 . . . . . . . . . . 11 π ∈ ℝ
14 remulcl 7748 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
1512, 13, 14sylancl 409 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ)
1615recnd 7794 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ)
17 cos2t 11457 . . . . . . . . 9 ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
1816, 17syl 14 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
1910, 11, 183eqtr3rd 2181 . . . . . . 7 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1)
2015recoscld 11431 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ)
2120recnd 7794 . . . . . . . . . 10 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ)
2221sqcld 10422 . . . . . . . . 9 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ)
23 mulcl 7747 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
245, 22, 23sylancr 410 . . . . . . . 8 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
25 ax-1cn 7713 . . . . . . . . 9 1 ∈ ℂ
26 subadd 7965 . . . . . . . . 9 (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2725, 25, 26mp3an23 1307 . . . . . . . 8 ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2824, 27syl 14 . . . . . . 7 (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2919, 28mpbid 146 . . . . . 6 (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))
303, 29syl5reqr 2187 . . . . 5 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1))
31 2ap0 8813 . . . . . . . 8 2 # 0
325, 31pm3.2i 270 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
33 mulcanap 8426 . . . . . . 7 ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3425, 32, 33mp3an23 1307 . . . . . 6 (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3522, 34syl 14 . . . . 5 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3630, 35mpbid 146 . . . 4 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1)
37 sq1 10386 . . . 4 (1↑2) = 1
3836, 37syl6eqr 2190 . . 3 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2))
39 1re 7765 . . . 4 1 ∈ ℝ
40 sqabs 10854 . . . 4 (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4120, 39, 40sylancl 409 . . 3 (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4238, 41mpbid 146 . 2 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1))
43 abs1 10844 . 2 (abs‘1) = 1
4442, 43syl6eq 2188 1 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  cmin 7933   # cap 8343  2c2 8771  cz 9054  cexp 10292  abscabs 10769  cosccos 11351  πcpi 11353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-pre-suploc 7741  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-ioc 9676  df-ico 9677  df-icc 9678  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-pi 11359  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator