![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coskpi | GIF version |
Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
Ref | Expression |
---|---|
coskpi | ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9247 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
2 | 2cn 8979 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
3 | picn 13875 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
4 | mul12 8076 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) | |
5 | 2, 3, 4 | mp3an23 1329 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
6 | 1, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
7 | 6 | fveq2d 5515 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π)))) |
8 | cos2kpi 13900 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | |
9 | zre 9246 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
10 | pire 13874 | . . . . . . . . . . 11 ⊢ π ∈ ℝ | |
11 | remulcl 7930 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ) | |
12 | 9, 10, 11 | sylancl 413 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ) |
13 | 12 | recnd 7976 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ) |
14 | cos2t 11742 | . . . . . . . . 9 ⊢ ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) | |
15 | 13, 14 | syl 14 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) |
16 | 7, 8, 15 | 3eqtr3rd 2219 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1) |
17 | 12 | recoscld 11716 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ) |
18 | 17 | recnd 7976 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ) |
19 | 18 | sqcld 10637 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ) |
20 | mulcl 7929 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) | |
21 | 2, 19, 20 | sylancr 414 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) |
22 | ax-1cn 7895 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
23 | subadd 8150 | . . . . . . . . 9 ⊢ (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) | |
24 | 22, 22, 23 | mp3an23 1329 | . . . . . . . 8 ⊢ ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
25 | 21, 24 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
26 | 16, 25 | mpbid 147 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))) |
27 | 2t1e2 9061 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
28 | df-2 8967 | . . . . . . 7 ⊢ 2 = (1 + 1) | |
29 | 27, 28 | eqtr2i 2199 | . . . . . 6 ⊢ (1 + 1) = (2 · 1) |
30 | 26, 29 | eqtr3di 2225 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1)) |
31 | 2ap0 9001 | . . . . . . . 8 ⊢ 2 # 0 | |
32 | 2, 31 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
33 | mulcanap 8611 | . . . . . . 7 ⊢ ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) | |
34 | 22, 32, 33 | mp3an23 1329 | . . . . . 6 ⊢ (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
35 | 19, 34 | syl 14 | . . . . 5 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
36 | 30, 35 | mpbid 147 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1) |
37 | sq1 10599 | . . . 4 ⊢ (1↑2) = 1 | |
38 | 36, 37 | eqtr4di 2228 | . . 3 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2)) |
39 | 1re 7947 | . . . 4 ⊢ 1 ∈ ℝ | |
40 | sqabs 11075 | . . . 4 ⊢ (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) | |
41 | 17, 39, 40 | sylancl 413 | . . 3 ⊢ (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) |
42 | 38, 41 | mpbid 147 | . 2 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1)) |
43 | abs1 11065 | . 2 ⊢ (abs‘1) = 1 | |
44 | 42, 43 | eqtrdi 2226 | 1 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 ℝcr 7801 0cc0 7802 1c1 7803 + caddc 7805 · cmul 7807 − cmin 8118 # cap 8528 2c2 8959 ℤcz 9242 ↑cexp 10505 abscabs 10990 cosccos 11637 πcpi 11639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 ax-pre-suploc 7923 ax-addf 7924 ax-mulf 7925 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-disj 3978 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-of 6077 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-frec 6386 df-1o 6411 df-oadd 6415 df-er 6529 df-map 6644 df-pm 6645 df-en 6735 df-dom 6736 df-fin 6737 df-sup 6977 df-inf 6978 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-5 8970 df-6 8971 df-7 8972 df-8 8973 df-9 8974 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-xneg 9759 df-xadd 9760 df-ioo 9879 df-ioc 9880 df-ico 9881 df-icc 9882 df-fz 9996 df-fzo 10129 df-seqfrec 10432 df-exp 10506 df-fac 10690 df-bc 10712 df-ihash 10740 df-shft 10808 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-clim 11271 df-sumdc 11346 df-ef 11640 df-sin 11642 df-cos 11643 df-pi 11645 df-rest 12638 df-topgen 12657 df-psmet 13154 df-xmet 13155 df-met 13156 df-bl 13157 df-mopn 13158 df-top 13163 df-topon 13176 df-bases 13208 df-ntr 13263 df-cn 13355 df-cnp 13356 df-tx 13420 df-cncf 13725 df-limced 13792 df-dvap 13793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |