ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coskpi GIF version

Theorem coskpi 15487
Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.)
Assertion
Ref Expression
coskpi (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)

Proof of Theorem coskpi
StepHypRef Expression
1 zcn 9419 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 9149 . . . . . . . . . . 11 2 ∈ ℂ
3 picn 15426 . . . . . . . . . . 11 π ∈ ℂ
4 mul12 8243 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
52, 3, 4mp3an23 1344 . . . . . . . . . 10 (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
61, 5syl 14 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
76fveq2d 5607 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π))))
8 cos2kpi 15451 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
9 zre 9418 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
10 pire 15425 . . . . . . . . . . 11 π ∈ ℝ
11 remulcl 8095 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
129, 10, 11sylancl 413 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ)
1312recnd 8143 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ)
14 cos2t 12227 . . . . . . . . 9 ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
1513, 14syl 14 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
167, 8, 153eqtr3rd 2251 . . . . . . 7 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1)
1712recoscld 12201 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ)
1817recnd 8143 . . . . . . . . . 10 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ)
1918sqcld 10860 . . . . . . . . 9 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ)
20 mulcl 8094 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
212, 19, 20sylancr 414 . . . . . . . 8 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
22 ax-1cn 8060 . . . . . . . . 9 1 ∈ ℂ
23 subadd 8317 . . . . . . . . 9 (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2422, 22, 23mp3an23 1344 . . . . . . . 8 ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2521, 24syl 14 . . . . . . 7 (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2616, 25mpbid 147 . . . . . 6 (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))
27 2t1e2 9232 . . . . . . 7 (2 · 1) = 2
28 df-2 9137 . . . . . . 7 2 = (1 + 1)
2927, 28eqtr2i 2231 . . . . . 6 (1 + 1) = (2 · 1)
3026, 29eqtr3di 2257 . . . . 5 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1))
31 2ap0 9171 . . . . . . . 8 2 # 0
322, 31pm3.2i 272 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
33 mulcanap 8780 . . . . . . 7 ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3422, 32, 33mp3an23 1344 . . . . . 6 (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3519, 34syl 14 . . . . 5 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3630, 35mpbid 147 . . . 4 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1)
37 sq1 10822 . . . 4 (1↑2) = 1
3836, 37eqtr4di 2260 . . 3 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2))
39 1re 8113 . . . 4 1 ∈ ℝ
40 sqabs 11559 . . . 4 (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4117, 39, 40sylancl 413 . . 3 (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4238, 41mpbid 147 . 2 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1))
43 abs1 11549 . 2 (abs‘1) = 1
4442, 43eqtrdi 2258 1 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  cmin 8285   # cap 8696  2c2 9129  cz 9414  cexp 10727  abscabs 11474  cosccos 12122  πcpi 12124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-pre-suploc 8088  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-ioc 10057  df-ico 10058  df-icc 10059  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-bc 10937  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ef 12125  df-sin 12127  df-cos 12128  df-pi 12130  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210  df-limced 15295  df-dvap 15296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator