| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coskpi | GIF version | ||
| Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
| Ref | Expression |
|---|---|
| coskpi | ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 2 | 2cn 9149 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 3 | picn 15426 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
| 4 | mul12 8243 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) | |
| 5 | 2, 3, 4 | mp3an23 1344 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
| 6 | 1, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
| 7 | 6 | fveq2d 5607 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π)))) |
| 8 | cos2kpi 15451 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | |
| 9 | zre 9418 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 10 | pire 15425 | . . . . . . . . . . 11 ⊢ π ∈ ℝ | |
| 11 | remulcl 8095 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ) | |
| 12 | 9, 10, 11 | sylancl 413 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ) |
| 13 | 12 | recnd 8143 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ) |
| 14 | cos2t 12227 | . . . . . . . . 9 ⊢ ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) | |
| 15 | 13, 14 | syl 14 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) |
| 16 | 7, 8, 15 | 3eqtr3rd 2251 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1) |
| 17 | 12 | recoscld 12201 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ) |
| 18 | 17 | recnd 8143 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ) |
| 19 | 18 | sqcld 10860 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ) |
| 20 | mulcl 8094 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) | |
| 21 | 2, 19, 20 | sylancr 414 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) |
| 22 | ax-1cn 8060 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 23 | subadd 8317 | . . . . . . . . 9 ⊢ (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) | |
| 24 | 22, 22, 23 | mp3an23 1344 | . . . . . . . 8 ⊢ ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
| 25 | 21, 24 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
| 26 | 16, 25 | mpbid 147 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))) |
| 27 | 2t1e2 9232 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 28 | df-2 9137 | . . . . . . 7 ⊢ 2 = (1 + 1) | |
| 29 | 27, 28 | eqtr2i 2231 | . . . . . 6 ⊢ (1 + 1) = (2 · 1) |
| 30 | 26, 29 | eqtr3di 2257 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1)) |
| 31 | 2ap0 9171 | . . . . . . . 8 ⊢ 2 # 0 | |
| 32 | 2, 31 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 33 | mulcanap 8780 | . . . . . . 7 ⊢ ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) | |
| 34 | 22, 32, 33 | mp3an23 1344 | . . . . . 6 ⊢ (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
| 35 | 19, 34 | syl 14 | . . . . 5 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
| 36 | 30, 35 | mpbid 147 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1) |
| 37 | sq1 10822 | . . . 4 ⊢ (1↑2) = 1 | |
| 38 | 36, 37 | eqtr4di 2260 | . . 3 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2)) |
| 39 | 1re 8113 | . . . 4 ⊢ 1 ∈ ℝ | |
| 40 | sqabs 11559 | . . . 4 ⊢ (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) | |
| 41 | 17, 39, 40 | sylancl 413 | . . 3 ⊢ (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) |
| 42 | 38, 41 | mpbid 147 | . 2 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1)) |
| 43 | abs1 11549 | . 2 ⊢ (abs‘1) = 1 | |
| 44 | 42, 43 | eqtrdi 2258 | 1 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 − cmin 8285 # cap 8696 2c2 9129 ℤcz 9414 ↑cexp 10727 abscabs 11474 cosccos 12122 πcpi 12124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 ax-pre-suploc 8088 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-disj 4039 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-pm 6768 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-ioo 10056 df-ioc 10057 df-ico 10058 df-icc 10059 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-bc 10937 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-sin 12127 df-cos 12128 df-pi 12130 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-cn 14827 df-cnp 14828 df-tx 14892 df-cncf 15210 df-limced 15295 df-dvap 15296 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |