![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnib | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | mtbid 638 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnibr 643 inssdif0im 3377 undifexmid 4057 ordtriexmidlem2 4374 dmsn0el 4944 fidifsnen 6693 ctssdclemr 6911 ltpopr 7304 caucvgprprlemnbj 7402 xrlttri3 9424 fzneuz 9722 iseqf1olemqcl 10100 iseqf1olemnab 10102 iseqf1olemab 10103 exp3val 10136 pwle2 12779 |
Copyright terms: Public domain | W3C validator |