Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylnib | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | mtbid 667 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnibr 672 neqcomd 2175 inssdif0im 3482 undifexmid 4179 ordtriexmidlem2 4504 dmsn0el 5080 fidifsnen 6848 ctssdccl 7088 nninfwlpoimlemginf 7152 onntri35 7214 onntri45 7218 ltpopr 7557 caucvgprprlemnbj 7655 xrlttri3 9754 fzneuz 10057 iseqf1olemqcl 10442 iseqf1olemnab 10444 iseqf1olemab 10445 exp3val 10478 pwle2 14031 |
Copyright terms: Public domain | W3C validator |