ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 671
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 667 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnibr  672  neqcomd  2175  inssdif0im  3482  undifexmid  4179  ordtriexmidlem2  4504  dmsn0el  5080  fidifsnen  6848  ctssdccl  7088  nninfwlpoimlemginf  7152  onntri35  7214  onntri45  7218  ltpopr  7557  caucvgprprlemnbj  7655  xrlttri3  9754  fzneuz  10057  iseqf1olemqcl  10442  iseqf1olemnab  10444  iseqf1olemab  10445  exp3val  10478  pwle2  14031
  Copyright terms: Public domain W3C validator