| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | mtbid 676 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 681 neqcomd 2234 inssdif0im 3559 undifexmid 4276 ordtriexmidlem2 4609 dmsn0el 5194 fidifsnen 7020 ctssdccl 7266 nninfwlpoimlemginf 7331 onntri35 7410 onntri45 7414 2omotaplemap 7431 exmidapne 7434 ltpopr 7770 caucvgprprlemnbj 7868 xrlttri3 9981 fzneuz 10285 iseqf1olemqcl 10708 iseqf1olemnab 10710 iseqf1olemab 10711 exp3val 10750 pwle2 16295 |
| Copyright terms: Public domain | W3C validator |