ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 676
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 672 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  677  neqcomd  2182  inssdif0im  3491  undifexmid  4194  ordtriexmidlem2  4520  dmsn0el  5099  fidifsnen  6870  ctssdccl  7110  nninfwlpoimlemginf  7174  onntri35  7236  onntri45  7240  2omotaplemap  7256  exmidapne  7259  ltpopr  7594  caucvgprprlemnbj  7692  xrlttri3  9797  fzneuz  10101  iseqf1olemqcl  10486  iseqf1olemnab  10488  iseqf1olemab  10489  exp3val  10522  pwle2  14751
  Copyright terms: Public domain W3C validator