![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnib | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | mtbid 673 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnibr 678 neqcomd 2198 inssdif0im 3514 undifexmid 4222 ordtriexmidlem2 4552 dmsn0el 5135 fidifsnen 6926 ctssdccl 7170 nninfwlpoimlemginf 7235 onntri35 7297 onntri45 7301 2omotaplemap 7317 exmidapne 7320 ltpopr 7655 caucvgprprlemnbj 7753 xrlttri3 9863 fzneuz 10167 iseqf1olemqcl 10570 iseqf1olemnab 10572 iseqf1olemab 10573 exp3val 10612 pwle2 15489 |
Copyright terms: Public domain | W3C validator |