| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | mtbid 674 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 679 neqcomd 2211 inssdif0im 3530 undifexmid 4242 ordtriexmidlem2 4573 dmsn0el 5158 fidifsnen 6979 ctssdccl 7225 nninfwlpoimlemginf 7290 onntri35 7362 onntri45 7366 2omotaplemap 7382 exmidapne 7385 ltpopr 7721 caucvgprprlemnbj 7819 xrlttri3 9932 fzneuz 10236 iseqf1olemqcl 10657 iseqf1olemnab 10659 iseqf1olemab 10660 exp3val 10699 pwle2 16050 |
| Copyright terms: Public domain | W3C validator |