ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 677
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 673 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  678  neqcomd  2201  inssdif0im  3519  undifexmid  4227  ordtriexmidlem2  4557  dmsn0el  5140  fidifsnen  6940  ctssdccl  7186  nninfwlpoimlemginf  7251  onntri35  7322  onntri45  7326  2omotaplemap  7342  exmidapne  7345  ltpopr  7681  caucvgprprlemnbj  7779  xrlttri3  9891  fzneuz  10195  iseqf1olemqcl  10610  iseqf1olemnab  10612  iseqf1olemab  10613  exp3val  10652  pwle2  15753
  Copyright terms: Public domain W3C validator