Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylnib | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | mtbid 662 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnibr 667 neqcomd 2170 inssdif0im 3476 undifexmid 4172 ordtriexmidlem2 4497 dmsn0el 5073 fidifsnen 6836 ctssdccl 7076 onntri35 7193 onntri45 7197 ltpopr 7536 caucvgprprlemnbj 7634 xrlttri3 9733 fzneuz 10036 iseqf1olemqcl 10421 iseqf1olemnab 10423 iseqf1olemab 10424 exp3val 10457 pwle2 13878 |
Copyright terms: Public domain | W3C validator |