ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 678
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 674 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  679  neqcomd  2211  inssdif0im  3530  undifexmid  4242  ordtriexmidlem2  4573  dmsn0el  5158  fidifsnen  6979  ctssdccl  7225  nninfwlpoimlemginf  7290  onntri35  7362  onntri45  7366  2omotaplemap  7382  exmidapne  7385  ltpopr  7721  caucvgprprlemnbj  7819  xrlttri3  9932  fzneuz  10236  iseqf1olemqcl  10657  iseqf1olemnab  10659  iseqf1olemab  10660  exp3val  10699  pwle2  16050
  Copyright terms: Public domain W3C validator