| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | mtbid 673 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 678 neqcomd 2201 inssdif0im 3519 undifexmid 4227 ordtriexmidlem2 4557 dmsn0el 5140 fidifsnen 6940 ctssdccl 7186 nninfwlpoimlemginf 7251 onntri35 7322 onntri45 7326 2omotaplemap 7342 exmidapne 7345 ltpopr 7681 caucvgprprlemnbj 7779 xrlttri3 9891 fzneuz 10195 iseqf1olemqcl 10610 iseqf1olemnab 10612 iseqf1olemab 10613 exp3val 10652 pwle2 15753 |
| Copyright terms: Public domain | W3C validator |