| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylnib | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) | 
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) | 
| Ref | Expression | 
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 4 | 1, 3 | mtbid 673 | 1 ⊢ (𝜑 → ¬ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylnibr 678 neqcomd 2201 inssdif0im 3518 undifexmid 4226 ordtriexmidlem2 4556 dmsn0el 5139 fidifsnen 6931 ctssdccl 7177 nninfwlpoimlemginf 7242 onntri35 7304 onntri45 7308 2omotaplemap 7324 exmidapne 7327 ltpopr 7662 caucvgprprlemnbj 7760 xrlttri3 9872 fzneuz 10176 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 exp3val 10633 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |