| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | mtbid 676 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 681 neqcomd 2234 inssdif0im 3559 undifexmid 4277 ordtriexmidlem2 4612 dmsn0el 5198 fidifsnen 7040 ctssdccl 7286 nninfwlpoimlemginf 7351 onntri35 7430 onntri45 7434 2omotaplemap 7451 exmidapne 7454 ltpopr 7790 caucvgprprlemnbj 7888 xrlttri3 10001 fzneuz 10305 iseqf1olemqcl 10729 iseqf1olemnab 10731 iseqf1olemab 10732 exp3val 10771 pwle2 16393 |
| Copyright terms: Public domain | W3C validator |