ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 677
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 673 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  678  neqcomd  2201  inssdif0im  3518  undifexmid  4226  ordtriexmidlem2  4556  dmsn0el  5139  fidifsnen  6931  ctssdccl  7177  nninfwlpoimlemginf  7242  onntri35  7304  onntri45  7308  2omotaplemap  7324  exmidapne  7327  ltpopr  7662  caucvgprprlemnbj  7760  xrlttri3  9872  fzneuz  10176  iseqf1olemqcl  10591  iseqf1olemnab  10593  iseqf1olemab  10594  exp3val  10633  pwle2  15643
  Copyright terms: Public domain W3C validator