ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib GIF version

Theorem sylnib 680
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1 (𝜑 → ¬ 𝜓)
sylnib.2 (𝜓𝜒)
Assertion
Ref Expression
sylnib (𝜑 → ¬ 𝜒)

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnib.2 . . 3 (𝜓𝜒)
32a1i 9 . 2 (𝜑 → (𝜓𝜒))
41, 3mtbid 676 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  681  neqcomd  2234  inssdif0im  3559  undifexmid  4276  ordtriexmidlem2  4609  dmsn0el  5194  fidifsnen  7020  ctssdccl  7266  nninfwlpoimlemginf  7331  onntri35  7410  onntri45  7414  2omotaplemap  7431  exmidapne  7434  ltpopr  7770  caucvgprprlemnbj  7868  xrlttri3  9981  fzneuz  10285  iseqf1olemqcl  10708  iseqf1olemnab  10710  iseqf1olemab  10711  exp3val  10750  pwle2  16295
  Copyright terms: Public domain W3C validator