ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf GIF version

Theorem nninfwlpoimlemginf 7304
Description: Lemma for nninfwlpoim 7307. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemginf (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑛,𝐺,𝑥   𝜑,𝑖,𝑥,𝑛
Allowed substitution hint:   𝐺(𝑖)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2 suceq 4467 . . . . . . . . . 10 (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛)
32rexeqdv 2712 . . . . . . . . 9 (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅))
43ifbid 3601 . . . . . . . 8 (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
5 simpr 110 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
6 0lt2o 6550 . . . . . . . . . 10 ∅ ∈ 2o
76a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∅ ∈ 2o)
8 1lt2o 6551 . . . . . . . . . 10 1o ∈ 2o
98a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 1o ∈ 2o)
10 peano2 4661 . . . . . . . . . . . 12 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
1110adantl 277 . . . . . . . . . . 11 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ ω)
12 nnfi 6995 . . . . . . . . . . 11 (suc 𝑛 ∈ ω → suc 𝑛 ∈ Fin)
1311, 12syl 14 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ Fin)
14 2ssom 6633 . . . . . . . . . . . . 13 2o ⊆ ω
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ω⟶2o)
1615ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o)
17 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛)
1811adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω)
19 elnn 4672 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω)
2017, 18, 19syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω)
2116, 20ffvelcdmd 5739 . . . . . . . . . . . . 13 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ 2o)
2214, 21sselid 3199 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ ω)
23 peano1 4660 . . . . . . . . . . . . 13 ∅ ∈ ω
2423a1i 9 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → ∅ ∈ ω)
25 nndceq 6608 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2622, 24, 25syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → DECID (𝐹𝑥) = ∅)
2726ralrimiva 2581 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅)
28 finexdc 7025 . . . . . . . . . 10 ((suc 𝑛 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
2913, 27, 28syl2anc 411 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
307, 9, 29ifcldcd 3617 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
311, 4, 5, 30fvmptd3 5696 . . . . . . 7 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
3231adantr 276 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
33 vex 2779 . . . . . . . . . 10 𝑛 ∈ V
3433sucid 4482 . . . . . . . . 9 𝑛 ∈ suc 𝑛
3534a1i 9 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ suc 𝑛)
36 simpr 110 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) = ∅)
37 fveqeq2 5608 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑛) = ∅))
3837rspcev 2884 . . . . . . . 8 ((𝑛 ∈ suc 𝑛 ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
3935, 36, 38syl2anc 411 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
4039iftrued 3586 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) = ∅)
4132, 40eqtrd 2240 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ∅)
42 1n0 6541 . . . . . . 7 1o ≠ ∅
4342neii 2380 . . . . . 6 ¬ 1o = ∅
44 simpllr 534 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
4544fveq1d 5601 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ((𝑖 ∈ ω ↦ 1o)‘𝑛))
46 eqid 2207 . . . . . . . . 9 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
47 eqidd 2208 . . . . . . . . 9 (𝑖 = 𝑛 → 1o = 1o)
485adantr 276 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ ω)
498a1i 9 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 1o ∈ 2o)
5046, 47, 48, 49fvmptd3 5696 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝑖 ∈ ω ↦ 1o)‘𝑛) = 1o)
5145, 50eqtrd 2240 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = 1o)
5251eqeq1d 2216 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝐺𝑛) = ∅ ↔ 1o = ∅))
5343, 52mtbiri 677 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ¬ (𝐺𝑛) = ∅)
5441, 53pm2.65da 663 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ¬ (𝐹𝑛) = ∅)
5515adantr 276 . . . . . . 7 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → 𝐹:ω⟶2o)
5655ffvelcdmda 5738 . . . . . 6 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) ∈ 2o)
57 elpri 3666 . . . . . . 7 ((𝐹𝑛) ∈ {∅, 1o} → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
58 df2o3 6539 . . . . . . 7 2o = {∅, 1o}
5957, 58eleq2s 2302 . . . . . 6 ((𝐹𝑛) ∈ 2o → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6056, 59syl 14 . . . . 5 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6160orcomd 731 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = 1o ∨ (𝐹𝑛) = ∅))
6254, 61ecased 1362 . . 3 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) = 1o)
6362ralrimiva 2581 . 2 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → ∀𝑛 ∈ ω (𝐹𝑛) = 1o)
64 eqeq1 2214 . . . . . . . . . . 11 ((𝐹𝑛) = 1o → ((𝐹𝑛) = ∅ ↔ 1o = ∅))
6543, 64mtbiri 677 . . . . . . . . . 10 ((𝐹𝑛) = 1o → ¬ (𝐹𝑛) = ∅)
6665ralimi 2571 . . . . . . . . 9 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅)
67 ralnex 2496 . . . . . . . . 9 (∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
6866, 67sylib 122 . . . . . . . 8 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
69 fveqeq2 5608 . . . . . . . . 9 (𝑛 = 𝑥 → ((𝐹𝑛) = ∅ ↔ (𝐹𝑥) = ∅))
7069cbvrexv 2743 . . . . . . . 8 (∃𝑛 ∈ ω (𝐹𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7168, 70sylnib 678 . . . . . . 7 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7271ad2antlr 489 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
73 peano2 4661 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
7473adantl 277 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈ ω)
75 elomssom 4671 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ⊆ ω)
76 ssrexv 3266 . . . . . . 7 (suc 𝑖 ⊆ ω → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7774, 75, 763syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7872, 77mtod 665 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
7978iffalsed 3589 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = 1o)
8079mpteq2dva 4150 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ 1o))
811, 80eqtrid 2252 . 2 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
8263, 81impbida 596 1 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wral 2486  wrex 2487  wss 3174  c0 3468  ifcif 3579  {cpr 3644  cmpt 4121  suc csuc 4430  ωcom 4656  wf 5286  cfv 5290  1oc1o 6518  2oc2o 6519  Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  nninfwlpoimlemdc  7305  nninfinfwlpolem  7306
  Copyright terms: Public domain W3C validator