ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf GIF version

Theorem nninfwlpoimlemginf 7235
Description: Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemginf (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑛,𝐺,𝑥   𝜑,𝑖,𝑥,𝑛
Allowed substitution hint:   𝐺(𝑖)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2 suceq 4433 . . . . . . . . . 10 (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛)
32rexeqdv 2697 . . . . . . . . 9 (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅))
43ifbid 3578 . . . . . . . 8 (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
5 simpr 110 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
6 0lt2o 6494 . . . . . . . . . 10 ∅ ∈ 2o
76a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∅ ∈ 2o)
8 1lt2o 6495 . . . . . . . . . 10 1o ∈ 2o
98a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 1o ∈ 2o)
10 peano2 4627 . . . . . . . . . . . 12 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
1110adantl 277 . . . . . . . . . . 11 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ ω)
12 nnfi 6928 . . . . . . . . . . 11 (suc 𝑛 ∈ ω → suc 𝑛 ∈ Fin)
1311, 12syl 14 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ Fin)
14 2ssom 6577 . . . . . . . . . . . . 13 2o ⊆ ω
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ω⟶2o)
1615ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o)
17 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛)
1811adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω)
19 elnn 4638 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω)
2017, 18, 19syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω)
2116, 20ffvelcdmd 5694 . . . . . . . . . . . . 13 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ 2o)
2214, 21sselid 3177 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ ω)
23 peano1 4626 . . . . . . . . . . . . 13 ∅ ∈ ω
2423a1i 9 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → ∅ ∈ ω)
25 nndceq 6552 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2622, 24, 25syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → DECID (𝐹𝑥) = ∅)
2726ralrimiva 2567 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅)
28 finexdc 6958 . . . . . . . . . 10 ((suc 𝑛 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
2913, 27, 28syl2anc 411 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
307, 9, 29ifcldcd 3593 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
311, 4, 5, 30fvmptd3 5651 . . . . . . 7 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
3231adantr 276 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
33 vex 2763 . . . . . . . . . 10 𝑛 ∈ V
3433sucid 4448 . . . . . . . . 9 𝑛 ∈ suc 𝑛
3534a1i 9 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ suc 𝑛)
36 simpr 110 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) = ∅)
37 fveqeq2 5563 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑛) = ∅))
3837rspcev 2864 . . . . . . . 8 ((𝑛 ∈ suc 𝑛 ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
3935, 36, 38syl2anc 411 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
4039iftrued 3564 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) = ∅)
4132, 40eqtrd 2226 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ∅)
42 1n0 6485 . . . . . . 7 1o ≠ ∅
4342neii 2366 . . . . . 6 ¬ 1o = ∅
44 simpllr 534 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
4544fveq1d 5556 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ((𝑖 ∈ ω ↦ 1o)‘𝑛))
46 eqid 2193 . . . . . . . . 9 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
47 eqidd 2194 . . . . . . . . 9 (𝑖 = 𝑛 → 1o = 1o)
485adantr 276 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ ω)
498a1i 9 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 1o ∈ 2o)
5046, 47, 48, 49fvmptd3 5651 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝑖 ∈ ω ↦ 1o)‘𝑛) = 1o)
5145, 50eqtrd 2226 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = 1o)
5251eqeq1d 2202 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝐺𝑛) = ∅ ↔ 1o = ∅))
5343, 52mtbiri 676 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ¬ (𝐺𝑛) = ∅)
5441, 53pm2.65da 662 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ¬ (𝐹𝑛) = ∅)
5515adantr 276 . . . . . . 7 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → 𝐹:ω⟶2o)
5655ffvelcdmda 5693 . . . . . 6 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) ∈ 2o)
57 elpri 3641 . . . . . . 7 ((𝐹𝑛) ∈ {∅, 1o} → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
58 df2o3 6483 . . . . . . 7 2o = {∅, 1o}
5957, 58eleq2s 2288 . . . . . 6 ((𝐹𝑛) ∈ 2o → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6056, 59syl 14 . . . . 5 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6160orcomd 730 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = 1o ∨ (𝐹𝑛) = ∅))
6254, 61ecased 1360 . . 3 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) = 1o)
6362ralrimiva 2567 . 2 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → ∀𝑛 ∈ ω (𝐹𝑛) = 1o)
64 eqeq1 2200 . . . . . . . . . . 11 ((𝐹𝑛) = 1o → ((𝐹𝑛) = ∅ ↔ 1o = ∅))
6543, 64mtbiri 676 . . . . . . . . . 10 ((𝐹𝑛) = 1o → ¬ (𝐹𝑛) = ∅)
6665ralimi 2557 . . . . . . . . 9 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅)
67 ralnex 2482 . . . . . . . . 9 (∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
6866, 67sylib 122 . . . . . . . 8 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
69 fveqeq2 5563 . . . . . . . . 9 (𝑛 = 𝑥 → ((𝐹𝑛) = ∅ ↔ (𝐹𝑥) = ∅))
7069cbvrexv 2727 . . . . . . . 8 (∃𝑛 ∈ ω (𝐹𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7168, 70sylnib 677 . . . . . . 7 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7271ad2antlr 489 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
73 peano2 4627 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
7473adantl 277 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈ ω)
75 elomssom 4637 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ⊆ ω)
76 ssrexv 3244 . . . . . . 7 (suc 𝑖 ⊆ ω → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7774, 75, 763syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7872, 77mtod 664 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
7978iffalsed 3567 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = 1o)
8079mpteq2dva 4119 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ 1o))
811, 80eqtrid 2238 . 2 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
8263, 81impbida 596 1 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  c0 3446  ifcif 3557  {cpr 3619  cmpt 4090  suc csuc 4396  ωcom 4622  wf 5250  cfv 5254  1oc1o 6462  2oc2o 6463  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  nninfwlpoimlemdc  7236
  Copyright terms: Public domain W3C validator