Proof of Theorem nninfwlpoimlemginf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nninfwlpoimlemg.g | 
. . . . . . . 8
⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅,
1o)) | 
| 2 |   | suceq 4437 | 
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛) | 
| 3 | 2 | rexeqdv 2700 | 
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅)) | 
| 4 | 3 | ifbid 3582 | 
. . . . . . . 8
⊢ (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
if(∃𝑥 ∈ suc
𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) | 
| 5 |   | simpr 110 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
𝑛 ∈
ω) | 
| 6 |   | 0lt2o 6499 | 
. . . . . . . . . 10
⊢ ∅
∈ 2o | 
| 7 | 6 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
∅ ∈ 2o) | 
| 8 |   | 1lt2o 6500 | 
. . . . . . . . . 10
⊢
1o ∈ 2o | 
| 9 | 8 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
1o ∈ 2o) | 
| 10 |   | peano2 4631 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) | 
| 11 | 10 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
suc 𝑛 ∈
ω) | 
| 12 |   | nnfi 6933 | 
. . . . . . . . . . 11
⊢ (suc
𝑛 ∈ ω → suc
𝑛 ∈
Fin) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
suc 𝑛 ∈
Fin) | 
| 14 |   | 2ssom 6582 | 
. . . . . . . . . . . . 13
⊢
2o ⊆ ω | 
| 15 |   | nninfwlpoimlemg.f | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ω⟶2o) | 
| 16 | 15 | ad3antrrr 492 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o) | 
| 17 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛) | 
| 18 | 11 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω) | 
| 19 |   | elnn 4642 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω) | 
| 20 | 17, 18, 19 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω) | 
| 21 | 16, 20 | ffvelcdmd 5698 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → (𝐹‘𝑥) ∈ 2o) | 
| 22 | 14, 21 | sselid 3181 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → (𝐹‘𝑥) ∈ ω) | 
| 23 |   | peano1 4630 | 
. . . . . . . . . . . . 13
⊢ ∅
∈ ω | 
| 24 | 23 | a1i 9 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → ∅ ∈
ω) | 
| 25 |   | nndceq 6557 | 
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ ω ∧ ∅ ∈
ω) → DECID (𝐹‘𝑥) = ∅) | 
| 26 | 22, 24, 25 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → DECID
(𝐹‘𝑥) = ∅) | 
| 27 | 26 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
∀𝑥 ∈ suc 𝑛DECID (𝐹‘𝑥) = ∅) | 
| 28 |   | finexdc 6963 | 
. . . . . . . . . 10
⊢ ((suc
𝑛 ∈ Fin ∧
∀𝑥 ∈ suc 𝑛DECID (𝐹‘𝑥) = ∅) → DECID
∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) | 
| 29 | 13, 27, 28 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
DECID ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) | 
| 30 | 7, 9, 29 | ifcldcd 3597 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
if(∃𝑥 ∈ suc
𝑛(𝐹‘𝑥) = ∅, ∅, 1o) ∈
2o) | 
| 31 | 1, 4, 5, 30 | fvmptd3 5655 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐺‘𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) | 
| 32 | 31 | adantr 276 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) | 
| 33 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑛 ∈ V | 
| 34 | 33 | sucid 4452 | 
. . . . . . . . 9
⊢ 𝑛 ∈ suc 𝑛 | 
| 35 | 34 | a1i 9 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝑛 ∈ suc 𝑛) | 
| 36 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐹‘𝑛) = ∅) | 
| 37 |   | fveqeq2 5567 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) = ∅ ↔ (𝐹‘𝑛) = ∅)) | 
| 38 | 37 | rspcev 2868 | 
. . . . . . . 8
⊢ ((𝑛 ∈ suc 𝑛 ∧ (𝐹‘𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) | 
| 39 | 35, 36, 38 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) | 
| 40 | 39 | iftrued 3568 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅, 1o) =
∅) | 
| 41 | 32, 40 | eqtrd 2229 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = ∅) | 
| 42 |   | 1n0 6490 | 
. . . . . . 7
⊢
1o ≠ ∅ | 
| 43 | 42 | neii 2369 | 
. . . . . 6
⊢  ¬
1o = ∅ | 
| 44 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦
1o)) | 
| 45 | 44 | fveq1d 5560 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = ((𝑖 ∈ ω ↦
1o)‘𝑛)) | 
| 46 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑖 ∈ ω ↦
1o) = (𝑖 ∈
ω ↦ 1o) | 
| 47 |   | eqidd 2197 | 
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → 1o =
1o) | 
| 48 | 5 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝑛 ∈ ω) | 
| 49 | 8 | a1i 9 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 1o ∈
2o) | 
| 50 | 46, 47, 48, 49 | fvmptd3 5655 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ((𝑖 ∈ ω ↦
1o)‘𝑛) =
1o) | 
| 51 | 45, 50 | eqtrd 2229 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = 1o) | 
| 52 | 51 | eqeq1d 2205 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ((𝐺‘𝑛) = ∅ ↔ 1o =
∅)) | 
| 53 | 43, 52 | mtbiri 676 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ¬ (𝐺‘𝑛) = ∅) | 
| 54 | 41, 53 | pm2.65da 662 | 
. . . 4
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
¬ (𝐹‘𝑛) = ∅) | 
| 55 | 15 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o))
→ 𝐹:ω⟶2o) | 
| 56 | 55 | ffvelcdmda 5697 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐹‘𝑛) ∈ 2o) | 
| 57 |   | elpri 3645 | 
. . . . . . 7
⊢ ((𝐹‘𝑛) ∈ {∅, 1o} →
((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) | 
| 58 |   | df2o3 6488 | 
. . . . . . 7
⊢
2o = {∅, 1o} | 
| 59 | 57, 58 | eleq2s 2291 | 
. . . . . 6
⊢ ((𝐹‘𝑛) ∈ 2o → ((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) | 
| 60 | 56, 59 | syl 14 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) | 
| 61 | 60 | orcomd 730 | 
. . . 4
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
((𝐹‘𝑛) = 1o ∨ (𝐹‘𝑛) = ∅)) | 
| 62 | 54, 61 | ecased 1360 | 
. . 3
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐹‘𝑛) = 1o) | 
| 63 | 62 | ralrimiva 2570 | 
. 2
⊢ ((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o))
→ ∀𝑛 ∈
ω (𝐹‘𝑛) =
1o) | 
| 64 |   | eqeq1 2203 | 
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) = 1o → ((𝐹‘𝑛) = ∅ ↔ 1o =
∅)) | 
| 65 | 43, 64 | mtbiri 676 | 
. . . . . . . . . 10
⊢ ((𝐹‘𝑛) = 1o → ¬ (𝐹‘𝑛) = ∅) | 
| 66 | 65 | ralimi 2560 | 
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o →
∀𝑛 ∈ ω
¬ (𝐹‘𝑛) = ∅) | 
| 67 |   | ralnex 2485 | 
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ¬ (𝐹‘𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹‘𝑛) = ∅) | 
| 68 | 66, 67 | sylib 122 | 
. . . . . . . 8
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o → ¬
∃𝑛 ∈ ω
(𝐹‘𝑛) = ∅) | 
| 69 |   | fveqeq2 5567 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑥 → ((𝐹‘𝑛) = ∅ ↔ (𝐹‘𝑥) = ∅)) | 
| 70 | 69 | cbvrexv 2730 | 
. . . . . . . 8
⊢
(∃𝑛 ∈
ω (𝐹‘𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅) | 
| 71 | 68, 70 | sylnib 677 | 
. . . . . . 7
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o → ¬
∃𝑥 ∈ ω
(𝐹‘𝑥) = ∅) | 
| 72 | 71 | ad2antlr 489 | 
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅) | 
| 73 |   | peano2 4631 | 
. . . . . . . 8
⊢ (𝑖 ∈ ω → suc 𝑖 ∈
ω) | 
| 74 | 73 | adantl 277 | 
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈
ω) | 
| 75 |   | elomssom 4641 | 
. . . . . . 7
⊢ (suc
𝑖 ∈ ω → suc
𝑖 ⊆
ω) | 
| 76 |   | ssrexv 3248 | 
. . . . . . 7
⊢ (suc
𝑖 ⊆ ω →
(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅)) | 
| 77 | 74, 75, 76 | 3syl 17 | 
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅)) | 
| 78 | 72, 77 | mtod 664 | 
. . . . 5
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅) | 
| 79 | 78 | iffalsed 3571 | 
. . . 4
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
1o) | 
| 80 | 79 | mpteq2dva 4123 | 
. . 3
⊢ ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) =
(𝑖 ∈ ω ↦
1o)) | 
| 81 | 1, 80 | eqtrid 2241 | 
. 2
⊢ ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦
1o)) | 
| 82 | 63, 81 | impbida 596 | 
1
⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑛 ∈ ω
(𝐹‘𝑛) = 1o)) |