ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf GIF version

Theorem nninfwlpoimlemginf 7168
Description: Lemma for nninfwlpoim 7170. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemginf (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑛,𝐺,𝑥   𝜑,𝑖,𝑥,𝑛
Allowed substitution hint:   𝐺(𝑖)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2 suceq 4399 . . . . . . . . . 10 (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛)
32rexeqdv 2679 . . . . . . . . 9 (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅))
43ifbid 3555 . . . . . . . 8 (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
5 simpr 110 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
6 0lt2o 6436 . . . . . . . . . 10 ∅ ∈ 2o
76a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∅ ∈ 2o)
8 1lt2o 6437 . . . . . . . . . 10 1o ∈ 2o
98a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 1o ∈ 2o)
10 peano2 4591 . . . . . . . . . . . 12 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
1110adantl 277 . . . . . . . . . . 11 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ ω)
12 nnfi 6866 . . . . . . . . . . 11 (suc 𝑛 ∈ ω → suc 𝑛 ∈ Fin)
1311, 12syl 14 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ Fin)
14 2ssom 6519 . . . . . . . . . . . . 13 2o ⊆ ω
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ω⟶2o)
1615ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o)
17 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛)
1811adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω)
19 elnn 4602 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω)
2017, 18, 19syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω)
2116, 20ffvelcdmd 5648 . . . . . . . . . . . . 13 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ 2o)
2214, 21sselid 3153 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ ω)
23 peano1 4590 . . . . . . . . . . . . 13 ∅ ∈ ω
2423a1i 9 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → ∅ ∈ ω)
25 nndceq 6494 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2622, 24, 25syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → DECID (𝐹𝑥) = ∅)
2726ralrimiva 2550 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅)
28 finexdc 6896 . . . . . . . . . 10 ((suc 𝑛 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
2913, 27, 28syl2anc 411 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
307, 9, 29ifcldcd 3569 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
311, 4, 5, 30fvmptd3 5605 . . . . . . 7 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
3231adantr 276 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
33 vex 2740 . . . . . . . . . 10 𝑛 ∈ V
3433sucid 4414 . . . . . . . . 9 𝑛 ∈ suc 𝑛
3534a1i 9 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ suc 𝑛)
36 simpr 110 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) = ∅)
37 fveqeq2 5520 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑛) = ∅))
3837rspcev 2841 . . . . . . . 8 ((𝑛 ∈ suc 𝑛 ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
3935, 36, 38syl2anc 411 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
4039iftrued 3541 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) = ∅)
4132, 40eqtrd 2210 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ∅)
42 1n0 6427 . . . . . . 7 1o ≠ ∅
4342neii 2349 . . . . . 6 ¬ 1o = ∅
44 simpllr 534 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
4544fveq1d 5513 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ((𝑖 ∈ ω ↦ 1o)‘𝑛))
46 eqid 2177 . . . . . . . . 9 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
47 eqidd 2178 . . . . . . . . 9 (𝑖 = 𝑛 → 1o = 1o)
485adantr 276 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ ω)
498a1i 9 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 1o ∈ 2o)
5046, 47, 48, 49fvmptd3 5605 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝑖 ∈ ω ↦ 1o)‘𝑛) = 1o)
5145, 50eqtrd 2210 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = 1o)
5251eqeq1d 2186 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝐺𝑛) = ∅ ↔ 1o = ∅))
5343, 52mtbiri 675 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ¬ (𝐺𝑛) = ∅)
5441, 53pm2.65da 661 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ¬ (𝐹𝑛) = ∅)
5515adantr 276 . . . . . . 7 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → 𝐹:ω⟶2o)
5655ffvelcdmda 5647 . . . . . 6 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) ∈ 2o)
57 elpri 3614 . . . . . . 7 ((𝐹𝑛) ∈ {∅, 1o} → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
58 df2o3 6425 . . . . . . 7 2o = {∅, 1o}
5957, 58eleq2s 2272 . . . . . 6 ((𝐹𝑛) ∈ 2o → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6056, 59syl 14 . . . . 5 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6160orcomd 729 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = 1o ∨ (𝐹𝑛) = ∅))
6254, 61ecased 1349 . . 3 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) = 1o)
6362ralrimiva 2550 . 2 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → ∀𝑛 ∈ ω (𝐹𝑛) = 1o)
64 eqeq1 2184 . . . . . . . . . . 11 ((𝐹𝑛) = 1o → ((𝐹𝑛) = ∅ ↔ 1o = ∅))
6543, 64mtbiri 675 . . . . . . . . . 10 ((𝐹𝑛) = 1o → ¬ (𝐹𝑛) = ∅)
6665ralimi 2540 . . . . . . . . 9 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅)
67 ralnex 2465 . . . . . . . . 9 (∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
6866, 67sylib 122 . . . . . . . 8 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
69 fveqeq2 5520 . . . . . . . . 9 (𝑛 = 𝑥 → ((𝐹𝑛) = ∅ ↔ (𝐹𝑥) = ∅))
7069cbvrexv 2704 . . . . . . . 8 (∃𝑛 ∈ ω (𝐹𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7168, 70sylnib 676 . . . . . . 7 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7271ad2antlr 489 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
73 peano2 4591 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
7473adantl 277 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈ ω)
75 elomssom 4601 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ⊆ ω)
76 ssrexv 3220 . . . . . . 7 (suc 𝑖 ⊆ ω → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7774, 75, 763syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7872, 77mtod 663 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
7978iffalsed 3544 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = 1o)
8079mpteq2dva 4090 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ 1o))
811, 80eqtrid 2222 . 2 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
8263, 81impbida 596 1 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129  c0 3422  ifcif 3534  {cpr 3592  cmpt 4061  suc csuc 4362  ωcom 4586  wf 5208  cfv 5212  1oc1o 6404  2oc2o 6405  Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by:  nninfwlpoimlemdc  7169
  Copyright terms: Public domain W3C validator