ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf GIF version

Theorem nninfwlpoimlemginf 7152
Description: Lemma for nninfwlpoim 7154. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemginf (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑛,𝐺,𝑥   𝜑,𝑖,𝑥,𝑛
Allowed substitution hint:   𝐺(𝑖)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2 suceq 4387 . . . . . . . . . 10 (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛)
32rexeqdv 2672 . . . . . . . . 9 (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅))
43ifbid 3547 . . . . . . . 8 (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
5 simpr 109 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
6 0lt2o 6420 . . . . . . . . . 10 ∅ ∈ 2o
76a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∅ ∈ 2o)
8 1lt2o 6421 . . . . . . . . . 10 1o ∈ 2o
98a1i 9 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → 1o ∈ 2o)
10 peano2 4579 . . . . . . . . . . . 12 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
1110adantl 275 . . . . . . . . . . 11 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ ω)
12 nnfi 6850 . . . . . . . . . . 11 (suc 𝑛 ∈ ω → suc 𝑛 ∈ Fin)
1311, 12syl 14 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → suc 𝑛 ∈ Fin)
14 2ssom 6503 . . . . . . . . . . . . 13 2o ⊆ ω
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ω⟶2o)
1615ad3antrrr 489 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o)
17 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛)
1811adantr 274 . . . . . . . . . . . . . . 15 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω)
19 elnn 4590 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω)
2017, 18, 19syl2anc 409 . . . . . . . . . . . . . 14 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω)
2116, 20ffvelrnd 5632 . . . . . . . . . . . . 13 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ 2o)
2214, 21sselid 3145 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → (𝐹𝑥) ∈ ω)
23 peano1 4578 . . . . . . . . . . . . 13 ∅ ∈ ω
2423a1i 9 . . . . . . . . . . . 12 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → ∅ ∈ ω)
25 nndceq 6478 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2622, 24, 25syl2anc 409 . . . . . . . . . . 11 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ 𝑥 ∈ suc 𝑛) → DECID (𝐹𝑥) = ∅)
2726ralrimiva 2543 . . . . . . . . . 10 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅)
28 finexdc 6880 . . . . . . . . . 10 ((suc 𝑛 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑛DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
2913, 27, 28syl2anc 409 . . . . . . . . 9 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → DECID𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
307, 9, 29ifcldcd 3561 . . . . . . . 8 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
311, 4, 5, 30fvmptd3 5589 . . . . . . 7 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
3231adantr 274 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o))
33 vex 2733 . . . . . . . . . 10 𝑛 ∈ V
3433sucid 4402 . . . . . . . . 9 𝑛 ∈ suc 𝑛
3534a1i 9 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ suc 𝑛)
36 simpr 109 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) = ∅)
37 fveqeq2 5505 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑛) = ∅))
3837rspcev 2834 . . . . . . . 8 ((𝑛 ∈ suc 𝑛 ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
3935, 36, 38syl2anc 409 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅)
4039iftrued 3533 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹𝑥) = ∅, ∅, 1o) = ∅)
4132, 40eqtrd 2203 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ∅)
42 1n0 6411 . . . . . . 7 1o ≠ ∅
4342neii 2342 . . . . . 6 ¬ 1o = ∅
44 simpllr 529 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
4544fveq1d 5498 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = ((𝑖 ∈ ω ↦ 1o)‘𝑛))
46 eqid 2170 . . . . . . . . 9 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
47 eqidd 2171 . . . . . . . . 9 (𝑖 = 𝑛 → 1o = 1o)
485adantr 274 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ ω)
498a1i 9 . . . . . . . . 9 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → 1o ∈ 2o)
5046, 47, 48, 49fvmptd3 5589 . . . . . . . 8 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝑖 ∈ ω ↦ 1o)‘𝑛) = 1o)
5145, 50eqtrd 2203 . . . . . . 7 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → (𝐺𝑛) = 1o)
5251eqeq1d 2179 . . . . . 6 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ((𝐺𝑛) = ∅ ↔ 1o = ∅))
5343, 52mtbiri 670 . . . . 5 ((((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) ∧ (𝐹𝑛) = ∅) → ¬ (𝐺𝑛) = ∅)
5441, 53pm2.65da 656 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ¬ (𝐹𝑛) = ∅)
5515adantr 274 . . . . . . 7 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → 𝐹:ω⟶2o)
5655ffvelrnda 5631 . . . . . 6 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) ∈ 2o)
57 elpri 3606 . . . . . . 7 ((𝐹𝑛) ∈ {∅, 1o} → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
58 df2o3 6409 . . . . . . 7 2o = {∅, 1o}
5957, 58eleq2s 2265 . . . . . 6 ((𝐹𝑛) ∈ 2o → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6056, 59syl 14 . . . . 5 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = ∅ ∨ (𝐹𝑛) = 1o))
6160orcomd 724 . . . 4 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → ((𝐹𝑛) = 1o ∨ (𝐹𝑛) = ∅))
6254, 61ecased 1344 . . 3 (((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧ 𝑛 ∈ ω) → (𝐹𝑛) = 1o)
6362ralrimiva 2543 . 2 ((𝜑𝐺 = (𝑖 ∈ ω ↦ 1o)) → ∀𝑛 ∈ ω (𝐹𝑛) = 1o)
64 eqeq1 2177 . . . . . . . . . . 11 ((𝐹𝑛) = 1o → ((𝐹𝑛) = ∅ ↔ 1o = ∅))
6543, 64mtbiri 670 . . . . . . . . . 10 ((𝐹𝑛) = 1o → ¬ (𝐹𝑛) = ∅)
6665ralimi 2533 . . . . . . . . 9 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅)
67 ralnex 2458 . . . . . . . . 9 (∀𝑛 ∈ ω ¬ (𝐹𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
6866, 67sylib 121 . . . . . . . 8 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑛 ∈ ω (𝐹𝑛) = ∅)
69 fveqeq2 5505 . . . . . . . . 9 (𝑛 = 𝑥 → ((𝐹𝑛) = ∅ ↔ (𝐹𝑥) = ∅))
7069cbvrexv 2697 . . . . . . . 8 (∃𝑛 ∈ ω (𝐹𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7168, 70sylnib 671 . . . . . . 7 (∀𝑛 ∈ ω (𝐹𝑛) = 1o → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
7271ad2antlr 486 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹𝑥) = ∅)
73 peano2 4579 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
7473adantl 275 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈ ω)
75 elomssom 4589 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ⊆ ω)
76 ssrexv 3212 . . . . . . 7 (suc 𝑖 ⊆ ω → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7774, 75, 763syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹𝑥) = ∅))
7872, 77mtod 658 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
7978iffalsed 3536 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = 1o)
8079mpteq2dva 4079 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ 1o))
811, 80eqtrid 2215 . 2 ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦ 1o))
8263, 81impbida 591 1 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  c0 3414  ifcif 3526  {cpr 3584  cmpt 4050  suc csuc 4350  ωcom 4574  wf 5194  cfv 5198  1oc1o 6388  2oc2o 6389  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  nninfwlpoimlemdc  7153
  Copyright terms: Public domain W3C validator