Proof of Theorem nninfwlpoimlemginf
Step | Hyp | Ref
| Expression |
1 | | nninfwlpoimlemg.g |
. . . . . . . 8
⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅,
1o)) |
2 | | suceq 4387 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → suc 𝑖 = suc 𝑛) |
3 | 2 | rexeqdv 2672 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅)) |
4 | 3 | ifbid 3547 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
if(∃𝑥 ∈ suc
𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) |
5 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
𝑛 ∈
ω) |
6 | | 0lt2o 6420 |
. . . . . . . . . 10
⊢ ∅
∈ 2o |
7 | 6 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
∅ ∈ 2o) |
8 | | 1lt2o 6421 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
9 | 8 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
1o ∈ 2o) |
10 | | peano2 4579 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
11 | 10 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
suc 𝑛 ∈
ω) |
12 | | nnfi 6850 |
. . . . . . . . . . 11
⊢ (suc
𝑛 ∈ ω → suc
𝑛 ∈
Fin) |
13 | 11, 12 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
suc 𝑛 ∈
Fin) |
14 | | 2ssom 6503 |
. . . . . . . . . . . . 13
⊢
2o ⊆ ω |
15 | | nninfwlpoimlemg.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ω⟶2o) |
16 | 15 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝐹:ω⟶2o) |
17 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝑥 ∈ suc 𝑛) |
18 | 11 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → suc 𝑛 ∈ ω) |
19 | | elnn 4590 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑥 ∈ ω) |
20 | 17, 18, 19 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → 𝑥 ∈ ω) |
21 | 16, 20 | ffvelrnd 5632 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → (𝐹‘𝑥) ∈ 2o) |
22 | 14, 21 | sselid 3145 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → (𝐹‘𝑥) ∈ ω) |
23 | | peano1 4578 |
. . . . . . . . . . . . 13
⊢ ∅
∈ ω |
24 | 23 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → ∅ ∈
ω) |
25 | | nndceq 6478 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ ω ∧ ∅ ∈
ω) → DECID (𝐹‘𝑥) = ∅) |
26 | 22, 24, 25 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
𝑥 ∈ suc 𝑛) → DECID
(𝐹‘𝑥) = ∅) |
27 | 26 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
∀𝑥 ∈ suc 𝑛DECID (𝐹‘𝑥) = ∅) |
28 | | finexdc 6880 |
. . . . . . . . . 10
⊢ ((suc
𝑛 ∈ Fin ∧
∀𝑥 ∈ suc 𝑛DECID (𝐹‘𝑥) = ∅) → DECID
∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) |
29 | 13, 27, 28 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
DECID ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) |
30 | 7, 9, 29 | ifcldcd 3561 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
if(∃𝑥 ∈ suc
𝑛(𝐹‘𝑥) = ∅, ∅, 1o) ∈
2o) |
31 | 1, 4, 5, 30 | fvmptd3 5589 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐺‘𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) |
32 | 31 | adantr 274 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅,
1o)) |
33 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
34 | 33 | sucid 4402 |
. . . . . . . . 9
⊢ 𝑛 ∈ suc 𝑛 |
35 | 34 | a1i 9 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝑛 ∈ suc 𝑛) |
36 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐹‘𝑛) = ∅) |
37 | | fveqeq2 5505 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) = ∅ ↔ (𝐹‘𝑛) = ∅)) |
38 | 37 | rspcev 2834 |
. . . . . . . 8
⊢ ((𝑛 ∈ suc 𝑛 ∧ (𝐹‘𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) |
39 | 35, 36, 38 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅) |
40 | 39 | iftrued 3533 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → if(∃𝑥 ∈ suc 𝑛(𝐹‘𝑥) = ∅, ∅, 1o) =
∅) |
41 | 32, 40 | eqtrd 2203 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = ∅) |
42 | | 1n0 6411 |
. . . . . . 7
⊢
1o ≠ ∅ |
43 | 42 | neii 2342 |
. . . . . 6
⊢ ¬
1o = ∅ |
44 | | simpllr 529 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝐺 = (𝑖 ∈ ω ↦
1o)) |
45 | 44 | fveq1d 5498 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = ((𝑖 ∈ ω ↦
1o)‘𝑛)) |
46 | | eqid 2170 |
. . . . . . . . 9
⊢ (𝑖 ∈ ω ↦
1o) = (𝑖 ∈
ω ↦ 1o) |
47 | | eqidd 2171 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → 1o =
1o) |
48 | 5 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 𝑛 ∈ ω) |
49 | 8 | a1i 9 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → 1o ∈
2o) |
50 | 46, 47, 48, 49 | fvmptd3 5589 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ((𝑖 ∈ ω ↦
1o)‘𝑛) =
1o) |
51 | 45, 50 | eqtrd 2203 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → (𝐺‘𝑛) = 1o) |
52 | 51 | eqeq1d 2179 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ((𝐺‘𝑛) = ∅ ↔ 1o =
∅)) |
53 | 43, 52 | mtbiri 670 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) ∧
(𝐹‘𝑛) = ∅) → ¬ (𝐺‘𝑛) = ∅) |
54 | 41, 53 | pm2.65da 656 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
¬ (𝐹‘𝑛) = ∅) |
55 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o))
→ 𝐹:ω⟶2o) |
56 | 55 | ffvelrnda 5631 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐹‘𝑛) ∈ 2o) |
57 | | elpri 3606 |
. . . . . . 7
⊢ ((𝐹‘𝑛) ∈ {∅, 1o} →
((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) |
58 | | df2o3 6409 |
. . . . . . 7
⊢
2o = {∅, 1o} |
59 | 57, 58 | eleq2s 2265 |
. . . . . 6
⊢ ((𝐹‘𝑛) ∈ 2o → ((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) |
60 | 56, 59 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
((𝐹‘𝑛) = ∅ ∨ (𝐹‘𝑛) = 1o)) |
61 | 60 | orcomd 724 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
((𝐹‘𝑛) = 1o ∨ (𝐹‘𝑛) = ∅)) |
62 | 54, 61 | ecased 1344 |
. . 3
⊢ (((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o)) ∧
𝑛 ∈ ω) →
(𝐹‘𝑛) = 1o) |
63 | 62 | ralrimiva 2543 |
. 2
⊢ ((𝜑 ∧ 𝐺 = (𝑖 ∈ ω ↦ 1o))
→ ∀𝑛 ∈
ω (𝐹‘𝑛) =
1o) |
64 | | eqeq1 2177 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) = 1o → ((𝐹‘𝑛) = ∅ ↔ 1o =
∅)) |
65 | 43, 64 | mtbiri 670 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑛) = 1o → ¬ (𝐹‘𝑛) = ∅) |
66 | 65 | ralimi 2533 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o →
∀𝑛 ∈ ω
¬ (𝐹‘𝑛) = ∅) |
67 | | ralnex 2458 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ¬ (𝐹‘𝑛) = ∅ ↔ ¬ ∃𝑛 ∈ ω (𝐹‘𝑛) = ∅) |
68 | 66, 67 | sylib 121 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o → ¬
∃𝑛 ∈ ω
(𝐹‘𝑛) = ∅) |
69 | | fveqeq2 5505 |
. . . . . . . . 9
⊢ (𝑛 = 𝑥 → ((𝐹‘𝑛) = ∅ ↔ (𝐹‘𝑥) = ∅)) |
70 | 69 | cbvrexv 2697 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ω (𝐹‘𝑛) = ∅ ↔ ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅) |
71 | 68, 70 | sylnib 671 |
. . . . . . 7
⊢
(∀𝑛 ∈
ω (𝐹‘𝑛) = 1o → ¬
∃𝑥 ∈ ω
(𝐹‘𝑥) = ∅) |
72 | 71 | ad2antlr 486 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅) |
73 | | peano2 4579 |
. . . . . . . 8
⊢ (𝑖 ∈ ω → suc 𝑖 ∈
ω) |
74 | 73 | adantl 275 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → suc 𝑖 ∈
ω) |
75 | | elomssom 4589 |
. . . . . . 7
⊢ (suc
𝑖 ∈ ω → suc
𝑖 ⊆
ω) |
76 | | ssrexv 3212 |
. . . . . . 7
⊢ (suc
𝑖 ⊆ ω →
(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅)) |
77 | 74, 75, 76 | 3syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ → ∃𝑥 ∈ ω (𝐹‘𝑥) = ∅)) |
78 | 72, 77 | mtod 658 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → ¬ ∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅) |
79 | 78 | iffalsed 3536 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
1o) |
80 | 79 | mpteq2dva 4079 |
. . 3
⊢ ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) → (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) =
(𝑖 ∈ ω ↦
1o)) |
81 | 1, 80 | eqtrid 2215 |
. 2
⊢ ((𝜑 ∧ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) → 𝐺 = (𝑖 ∈ ω ↦
1o)) |
82 | 63, 81 | impbida 591 |
1
⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑛 ∈ ω
(𝐹‘𝑛) = 1o)) |