Proof of Theorem iseqf1olemab
Step | Hyp | Ref
| Expression |
1 | | eqtr3 2185 |
. . . . 5
⊢ ((𝐵 = 𝐾 ∧ 𝐴 = 𝐾) → 𝐵 = 𝐴) |
2 | 1 | eqcomd 2171 |
. . . 4
⊢ ((𝐵 = 𝐾 ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
3 | 2 | adantll 468 |
. . 3
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
4 | | iseqf1olemqcl.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
5 | | elfzelz 9960 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
6 | 4, 5 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
7 | 6 | zred 9313 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | 7 | ltm1d 8827 |
. . . . 5
⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
9 | 8 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) < 𝐴) |
10 | 7 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
11 | | peano2rem 8165 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈
ℝ) |
12 | 10, 11 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
13 | | iseqf1olemab.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
14 | | elfzle2 9963 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐴 ≤ (◡𝐽‘𝐾)) |
15 | 13, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ (◡𝐽‘𝐾)) |
16 | 15 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (◡𝐽‘𝐾)) |
17 | | iseqf1olemqcl.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
18 | | iseqf1olemqcl.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
19 | | iseqf1olemnab.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
20 | 17, 18, 4, 19 | iseqf1olemqval 10422 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
21 | 13 | iftrued 3527 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
22 | 20, 21 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
23 | 22 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
24 | | iseqf1olemnab.eq |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
25 | 24 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
26 | | iseqf1olemnab.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
27 | 17, 18, 26, 19 | iseqf1olemqval 10422 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
28 | | iseqf1olemab.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
29 | 28 | iftrued 3527 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
30 | 27, 29 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
31 | 30 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
32 | | simplr 520 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐵 = 𝐾) |
33 | 32 | iftrued 3527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = 𝐾) |
34 | 31, 33 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = 𝐾) |
35 | 25, 34 | eqtrd 2198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = 𝐾) |
36 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
37 | 36 | iffalsed 3530 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = (𝐽‘(𝐴 − 1))) |
38 | 23, 35, 37 | 3eqtr3d 2206 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐾 = (𝐽‘(𝐴 − 1))) |
39 | 38 | fveq2d 5490 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (◡𝐽‘(𝐽‘(𝐴 − 1)))) |
40 | 18 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
41 | | elfzel1 9959 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
42 | 17, 41 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
43 | | elfzel2 9958 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
44 | 17, 43 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
45 | | peano2zm 9229 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
46 | 6, 45 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 1) ∈ ℤ) |
47 | 42, 44, 46 | 3jca 1167 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
48 | 47 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
49 | 42 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
50 | 49 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ) |
51 | | elfzelz 9960 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
52 | 17, 51 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ ℤ) |
53 | 52 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
54 | 53 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ) |
55 | 46 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
56 | 55 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
57 | | elfzle1 9962 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
58 | 17, 57 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
59 | 58 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ 𝐾) |
60 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
61 | | eqcom 2167 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) |
62 | 60, 61 | sylnib 666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) |
63 | | elfzle1 9962 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) |
64 | 13, 63 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐴) |
65 | | zleloe 9238 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
66 | 52, 6, 65 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
67 | 64, 66 | mpbid 146 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
68 | 67 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
69 | 62, 68 | ecased 1339 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) |
70 | | zltlem1 9248 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
71 | 52, 6, 70 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
72 | 71 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
73 | 69, 72 | mpbid 146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) |
74 | 50, 54, 56, 59, 73 | letrd 8022 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1)) |
75 | 7 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
76 | 44 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℝ) |
77 | 76 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ) |
78 | 75 | lem1d 8828 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) |
79 | | elfzle2 9963 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) |
80 | 4, 79 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
81 | 80 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ 𝑁) |
82 | 56, 75, 77, 78, 81 | letrd 8022 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁) |
83 | 74, 82 | jca 304 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)) |
84 | | elfz2 9951 |
. . . . . . . . . 10
⊢ ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))) |
85 | 48, 83, 84 | sylanbrc 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
86 | 85 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
87 | | f1ocnvfv1 5745 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝑀...𝑁)) → (◡𝐽‘(𝐽‘(𝐴 − 1))) = (𝐴 − 1)) |
88 | 40, 86, 87 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘(𝐽‘(𝐴 − 1))) = (𝐴 − 1)) |
89 | 39, 88 | eqtrd 2198 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (𝐴 − 1)) |
90 | 16, 89 | breqtrd 4008 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (𝐴 − 1)) |
91 | 10, 12, 90 | lensymd 8020 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ (𝐴 − 1) < 𝐴) |
92 | 9, 91 | pm2.21dd 610 |
. . 3
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
93 | | zdceq 9266 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) |
94 | 6, 52, 93 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → DECID 𝐴 = 𝐾) |
95 | | exmiddc 826 |
. . . . 5
⊢
(DECID 𝐴 = 𝐾 → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
96 | 94, 95 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
97 | 96 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐾) → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
98 | 3, 92, 97 | mpjaodan 788 |
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐾) → 𝐴 = 𝐵) |
99 | | elfzelz 9960 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ) |
100 | 26, 99 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℤ) |
101 | 100 | zred 9313 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
102 | 101 | ltm1d 8827 |
. . . . 5
⊢ (𝜑 → (𝐵 − 1) < 𝐵) |
103 | 102 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) < 𝐵) |
104 | 101 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ∈ ℝ) |
105 | | peano2rem 8165 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈
ℝ) |
106 | 104, 105 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) ∈ ℝ) |
107 | | elfzle2 9963 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐵 ≤ (◡𝐽‘𝐾)) |
108 | 28, 107 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ≤ (◡𝐽‘𝐾)) |
109 | 108 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ≤ (◡𝐽‘𝐾)) |
110 | 30 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
111 | 24 | eqcomd 2171 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐵) = (𝑄‘𝐴)) |
112 | 111 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = (𝑄‘𝐴)) |
113 | 22 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
114 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐾) |
115 | 114 | iftrued 3527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = 𝐾) |
116 | 113, 115 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐴) = 𝐾) |
117 | 112, 116 | eqtrd 2198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = 𝐾) |
118 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → ¬ 𝐵 = 𝐾) |
119 | 118 | iffalsed 3530 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = (𝐽‘(𝐵 − 1))) |
120 | 110, 117,
119 | 3eqtr3d 2206 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐾 = (𝐽‘(𝐵 − 1))) |
121 | 120 | fveq2d 5490 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (◡𝐽‘(𝐽‘(𝐵 − 1)))) |
122 | 18 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
123 | | peano2zm 9229 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈
ℤ) |
124 | 100, 123 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 1) ∈ ℤ) |
125 | 42, 44, 124 | 3jca 1167 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈
ℤ)) |
126 | 125 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈
ℤ)) |
127 | 49 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ∈ ℝ) |
128 | 53 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ∈ ℝ) |
129 | 101, 105 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 1) ∈ ℝ) |
130 | 129 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ∈ ℝ) |
131 | 58 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ≤ 𝐾) |
132 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → ¬ 𝐵 = 𝐾) |
133 | | eqcom 2167 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 𝐾 ↔ 𝐾 = 𝐵) |
134 | 132, 133 | sylnib 666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → ¬ 𝐾 = 𝐵) |
135 | | elfzle1 9962 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐵) |
136 | 28, 135 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐵) |
137 | 136 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ≤ 𝐵) |
138 | | zleloe 9238 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
139 | 52, 100, 138 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
140 | 139 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
141 | 137, 140 | mpbid 146 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 < 𝐵 ∨ 𝐾 = 𝐵)) |
142 | 134, 141 | ecased 1339 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 < 𝐵) |
143 | | zltlem1 9248 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
144 | 52, 100, 143 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
145 | 144 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
146 | 142, 145 | mpbid 146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ≤ (𝐵 − 1)) |
147 | 127, 128,
130, 131, 146 | letrd 8022 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ≤ (𝐵 − 1)) |
148 | 101 | lem1d 8828 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 1) ≤ 𝐵) |
149 | | elfzle2 9963 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ≤ 𝑁) |
150 | 26, 149 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ≤ 𝑁) |
151 | 129, 101,
76, 148, 150 | letrd 8022 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 1) ≤ 𝑁) |
152 | 151 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ≤ 𝑁) |
153 | 147, 152 | jca 304 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝑀 ≤ (𝐵 − 1) ∧ (𝐵 − 1) ≤ 𝑁)) |
154 | | elfz2 9951 |
. . . . . . . . . 10
⊢ ((𝐵 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐵 − 1) ∧ (𝐵 − 1) ≤ 𝑁))) |
155 | 126, 153,
154 | sylanbrc 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
156 | 155 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
157 | | f1ocnvfv1 5745 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐵 − 1) ∈ (𝑀...𝑁)) → (◡𝐽‘(𝐽‘(𝐵 − 1))) = (𝐵 − 1)) |
158 | 122, 156,
157 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘(𝐽‘(𝐵 − 1))) = (𝐵 − 1)) |
159 | 121, 158 | eqtrd 2198 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (𝐵 − 1)) |
160 | 109, 159 | breqtrd 4008 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ≤ (𝐵 − 1)) |
161 | 104, 106,
160 | lensymd 8020 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → ¬ (𝐵 − 1) < 𝐵) |
162 | 103, 161 | pm2.21dd 610 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
163 | 6 | zcnd 9314 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
164 | 163 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℂ) |
165 | 100 | zcnd 9314 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℂ) |
166 | 165 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐵 ∈ ℂ) |
167 | | 1cnd 7915 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 1 ∈ ℂ) |
168 | 24 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
169 | 22 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
170 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
171 | 170 | iffalsed 3530 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = (𝐽‘(𝐴 − 1))) |
172 | 169, 171 | eqtrd 2198 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝐽‘(𝐴 − 1))) |
173 | 30 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
174 | | simplr 520 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐵 = 𝐾) |
175 | 174 | iffalsed 3530 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = (𝐽‘(𝐵 − 1))) |
176 | 173, 175 | eqtrd 2198 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = (𝐽‘(𝐵 − 1))) |
177 | 168, 172,
176 | 3eqtr3d 2206 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1))) |
178 | | f1of1 5431 |
. . . . . . . 8
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
179 | 18, 178 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
180 | 179 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
181 | 85 | adantlr 469 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
182 | 155 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
183 | | f1veqaeq 5737 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ ((𝐴 − 1) ∈ (𝑀...𝑁) ∧ (𝐵 − 1) ∈ (𝑀...𝑁))) → ((𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1)) → (𝐴 − 1) = (𝐵 − 1))) |
184 | 180, 181,
182, 183 | syl12anc 1226 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ((𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1)) → (𝐴 − 1) = (𝐵 − 1))) |
185 | 177, 184 | mpd 13 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) = (𝐵 − 1)) |
186 | 164, 166,
167, 185 | subcan2d 8251 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
187 | 96 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
188 | 162, 186,
187 | mpjaodan 788 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐴 = 𝐵) |
189 | | zdceq 9266 |
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐵 =
𝐾) |
190 | 100, 52, 189 | syl2anc 409 |
. . 3
⊢ (𝜑 → DECID 𝐵 = 𝐾) |
191 | | exmiddc 826 |
. . 3
⊢
(DECID 𝐵 = 𝐾 → (𝐵 = 𝐾 ∨ ¬ 𝐵 = 𝐾)) |
192 | 190, 191 | syl 14 |
. 2
⊢ (𝜑 → (𝐵 = 𝐾 ∨ ¬ 𝐵 = 𝐾)) |
193 | 98, 188, 192 | mpjaodan 788 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |