Proof of Theorem iseqf1olemab
| Step | Hyp | Ref
| Expression |
| 1 | | eqtr3 2216 |
. . . . 5
⊢ ((𝐵 = 𝐾 ∧ 𝐴 = 𝐾) → 𝐵 = 𝐴) |
| 2 | 1 | eqcomd 2202 |
. . . 4
⊢ ((𝐵 = 𝐾 ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
| 3 | 2 | adantll 476 |
. . 3
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
| 4 | | iseqf1olemqcl.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| 5 | | elfzelz 10100 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
| 6 | 4, 5 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 7 | 6 | zred 9448 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | 7 | ltm1d 8959 |
. . . . 5
⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
| 9 | 8 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) < 𝐴) |
| 10 | 7 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
| 11 | | peano2rem 8293 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈
ℝ) |
| 12 | 10, 11 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
| 13 | | iseqf1olemab.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 14 | | elfzle2 10103 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐴 ≤ (◡𝐽‘𝐾)) |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ (◡𝐽‘𝐾)) |
| 16 | 15 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (◡𝐽‘𝐾)) |
| 17 | | iseqf1olemqcl.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 18 | | iseqf1olemqcl.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 19 | | iseqf1olemnab.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| 20 | 17, 18, 4, 19 | iseqf1olemqval 10592 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 21 | 13 | iftrued 3568 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 22 | 20, 21 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 23 | 22 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 24 | | iseqf1olemnab.eq |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 26 | | iseqf1olemnab.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
| 27 | 17, 18, 26, 19 | iseqf1olemqval 10592 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
| 28 | | iseqf1olemab.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 29 | 28 | iftrued 3568 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
| 30 | 27, 29 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
| 31 | 30 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
| 32 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐵 = 𝐾) |
| 33 | 32 | iftrued 3568 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = 𝐾) |
| 34 | 31, 33 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = 𝐾) |
| 35 | 25, 34 | eqtrd 2229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = 𝐾) |
| 36 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
| 37 | 36 | iffalsed 3571 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = (𝐽‘(𝐴 − 1))) |
| 38 | 23, 35, 37 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐾 = (𝐽‘(𝐴 − 1))) |
| 39 | 38 | fveq2d 5562 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (◡𝐽‘(𝐽‘(𝐴 − 1)))) |
| 40 | 18 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 41 | | elfzel1 10099 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| 42 | 17, 41 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 43 | | elfzel2 10098 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| 44 | 17, 43 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 45 | | peano2zm 9364 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 46 | 6, 45 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 1) ∈ ℤ) |
| 47 | 42, 44, 46 | 3jca 1179 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
| 48 | 47 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
| 49 | 42 | zred 9448 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 50 | 49 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ) |
| 51 | | elfzelz 10100 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 52 | 17, 51 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 53 | 52 | zred 9448 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 54 | 53 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ) |
| 55 | 46 | zred 9448 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
| 56 | 55 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
| 57 | | elfzle1 10102 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| 58 | 17, 57 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
| 59 | 58 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ 𝐾) |
| 60 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
| 61 | | eqcom 2198 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) |
| 62 | 60, 61 | sylnib 677 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) |
| 63 | | elfzle1 10102 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) |
| 64 | 13, 63 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐴) |
| 65 | | zleloe 9373 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 66 | 52, 6, 65 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 67 | 64, 66 | mpbid 147 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
| 69 | 62, 68 | ecased 1360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) |
| 70 | | zltlem1 9383 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 71 | 52, 6, 70 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 72 | 71 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 73 | 69, 72 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) |
| 74 | 50, 54, 56, 59, 73 | letrd 8150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1)) |
| 75 | 7 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
| 76 | 44 | zred 9448 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 77 | 76 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ) |
| 78 | 75 | lem1d 8960 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) |
| 79 | | elfzle2 10103 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) |
| 80 | 4, 79 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
| 81 | 80 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ 𝑁) |
| 82 | 56, 75, 77, 78, 81 | letrd 8150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁) |
| 83 | 74, 82 | jca 306 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)) |
| 84 | | elfz2 10090 |
. . . . . . . . . 10
⊢ ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))) |
| 85 | 48, 83, 84 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
| 86 | 85 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
| 87 | | f1ocnvfv1 5824 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝑀...𝑁)) → (◡𝐽‘(𝐽‘(𝐴 − 1))) = (𝐴 − 1)) |
| 88 | 40, 86, 87 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘(𝐽‘(𝐴 − 1))) = (𝐴 − 1)) |
| 89 | 39, 88 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (𝐴 − 1)) |
| 90 | 16, 89 | breqtrd 4059 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (𝐴 − 1)) |
| 91 | 10, 12, 90 | lensymd 8148 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ (𝐴 − 1) < 𝐴) |
| 92 | 9, 91 | pm2.21dd 621 |
. . 3
⊢ (((𝜑 ∧ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
| 93 | | zdceq 9401 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) |
| 94 | 6, 52, 93 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → DECID 𝐴 = 𝐾) |
| 95 | | exmiddc 837 |
. . . . 5
⊢
(DECID 𝐴 = 𝐾 → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
| 96 | 94, 95 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
| 97 | 96 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐾) → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
| 98 | 3, 92, 97 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐾) → 𝐴 = 𝐵) |
| 99 | | elfzelz 10100 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ) |
| 100 | 26, 99 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 101 | 100 | zred 9448 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 102 | 101 | ltm1d 8959 |
. . . . 5
⊢ (𝜑 → (𝐵 − 1) < 𝐵) |
| 103 | 102 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) < 𝐵) |
| 104 | 101 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ∈ ℝ) |
| 105 | | peano2rem 8293 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈
ℝ) |
| 106 | 104, 105 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) ∈ ℝ) |
| 107 | | elfzle2 10103 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐵 ≤ (◡𝐽‘𝐾)) |
| 108 | 28, 107 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ≤ (◡𝐽‘𝐾)) |
| 109 | 108 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ≤ (◡𝐽‘𝐾)) |
| 110 | 30 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
| 111 | 24 | eqcomd 2202 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘𝐵) = (𝑄‘𝐴)) |
| 112 | 111 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = (𝑄‘𝐴)) |
| 113 | 22 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 114 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐾) |
| 115 | 114 | iftrued 3568 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = 𝐾) |
| 116 | 113, 115 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐴) = 𝐾) |
| 117 | 112, 116 | eqtrd 2229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝑄‘𝐵) = 𝐾) |
| 118 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → ¬ 𝐵 = 𝐾) |
| 119 | 118 | iffalsed 3571 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = (𝐽‘(𝐵 − 1))) |
| 120 | 110, 117,
119 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐾 = (𝐽‘(𝐵 − 1))) |
| 121 | 120 | fveq2d 5562 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (◡𝐽‘(𝐽‘(𝐵 − 1)))) |
| 122 | 18 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 123 | | peano2zm 9364 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈
ℤ) |
| 124 | 100, 123 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 1) ∈ ℤ) |
| 125 | 42, 44, 124 | 3jca 1179 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈
ℤ)) |
| 126 | 125 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈
ℤ)) |
| 127 | 49 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ∈ ℝ) |
| 128 | 53 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ∈ ℝ) |
| 129 | 101, 105 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 1) ∈ ℝ) |
| 130 | 129 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ∈ ℝ) |
| 131 | 58 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ≤ 𝐾) |
| 132 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → ¬ 𝐵 = 𝐾) |
| 133 | | eqcom 2198 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 𝐾 ↔ 𝐾 = 𝐵) |
| 134 | 132, 133 | sylnib 677 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → ¬ 𝐾 = 𝐵) |
| 135 | | elfzle1 10102 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐵) |
| 136 | 28, 135 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐵) |
| 137 | 136 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ≤ 𝐵) |
| 138 | | zleloe 9373 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
| 139 | 52, 100, 138 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
| 140 | 139 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 ≤ 𝐵 ↔ (𝐾 < 𝐵 ∨ 𝐾 = 𝐵))) |
| 141 | 137, 140 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 < 𝐵 ∨ 𝐾 = 𝐵)) |
| 142 | 134, 141 | ecased 1360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 < 𝐵) |
| 143 | | zltlem1 9383 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
| 144 | 52, 100, 143 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
| 145 | 144 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐾 < 𝐵 ↔ 𝐾 ≤ (𝐵 − 1))) |
| 146 | 142, 145 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐾 ≤ (𝐵 − 1)) |
| 147 | 127, 128,
130, 131, 146 | letrd 8150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝑀 ≤ (𝐵 − 1)) |
| 148 | 101 | lem1d 8960 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 1) ≤ 𝐵) |
| 149 | | elfzle2 10103 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ≤ 𝑁) |
| 150 | 26, 149 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ≤ 𝑁) |
| 151 | 129, 101,
76, 148, 150 | letrd 8150 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 1) ≤ 𝑁) |
| 152 | 151 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ≤ 𝑁) |
| 153 | 147, 152 | jca 306 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝑀 ≤ (𝐵 − 1) ∧ (𝐵 − 1) ≤ 𝑁)) |
| 154 | | elfz2 10090 |
. . . . . . . . . 10
⊢ ((𝐵 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐵 − 1) ∧ (𝐵 − 1) ≤ 𝑁))) |
| 155 | 126, 153,
154 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
| 156 | 155 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
| 157 | | f1ocnvfv1 5824 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐵 − 1) ∈ (𝑀...𝑁)) → (◡𝐽‘(𝐽‘(𝐵 − 1))) = (𝐵 − 1)) |
| 158 | 122, 156,
157 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘(𝐽‘(𝐵 − 1))) = (𝐵 − 1)) |
| 159 | 121, 158 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) = (𝐵 − 1)) |
| 160 | 109, 159 | breqtrd 4059 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐵 ≤ (𝐵 − 1)) |
| 161 | 104, 106,
160 | lensymd 8148 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → ¬ (𝐵 − 1) < 𝐵) |
| 162 | 103, 161 | pm2.21dd 621 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
| 163 | 6 | zcnd 9449 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 164 | 163 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℂ) |
| 165 | 100 | zcnd 9449 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 166 | 165 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐵 ∈ ℂ) |
| 167 | | 1cnd 8042 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 1 ∈ ℂ) |
| 168 | 24 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 169 | 22 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 170 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
| 171 | 170 | iffalsed 3571 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) = (𝐽‘(𝐴 − 1))) |
| 172 | 169, 171 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐴) = (𝐽‘(𝐴 − 1))) |
| 173 | 30 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1)))) |
| 174 | | simplr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐵 = 𝐾) |
| 175 | 174 | iffalsed 3571 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))) = (𝐽‘(𝐵 − 1))) |
| 176 | 173, 175 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝑄‘𝐵) = (𝐽‘(𝐵 − 1))) |
| 177 | 168, 172,
176 | 3eqtr3d 2237 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1))) |
| 178 | | f1of1 5503 |
. . . . . . . 8
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 179 | 18, 178 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 180 | 179 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 181 | 85 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
| 182 | 155 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐵 − 1) ∈ (𝑀...𝑁)) |
| 183 | | f1veqaeq 5816 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ ((𝐴 − 1) ∈ (𝑀...𝑁) ∧ (𝐵 − 1) ∈ (𝑀...𝑁))) → ((𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1)) → (𝐴 − 1) = (𝐵 − 1))) |
| 184 | 180, 181,
182, 183 | syl12anc 1247 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → ((𝐽‘(𝐴 − 1)) = (𝐽‘(𝐵 − 1)) → (𝐴 − 1) = (𝐵 − 1))) |
| 185 | 177, 184 | mpd 13 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) = (𝐵 − 1)) |
| 186 | 164, 166,
167, 185 | subcan2d 8379 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐾) ∧ ¬ 𝐴 = 𝐾) → 𝐴 = 𝐵) |
| 187 | 96 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → (𝐴 = 𝐾 ∨ ¬ 𝐴 = 𝐾)) |
| 188 | 162, 186,
187 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐾) → 𝐴 = 𝐵) |
| 189 | | zdceq 9401 |
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐵 =
𝐾) |
| 190 | 100, 52, 189 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝐵 = 𝐾) |
| 191 | | exmiddc 837 |
. . 3
⊢
(DECID 𝐵 = 𝐾 → (𝐵 = 𝐾 ∨ ¬ 𝐵 = 𝐾)) |
| 192 | 190, 191 | syl 14 |
. 2
⊢ (𝜑 → (𝐵 = 𝐾 ∨ ¬ 𝐵 = 𝐾)) |
| 193 | 98, 188, 192 | mpjaodan 799 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |