ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj GIF version

Theorem caucvgprprlemnbj 7694
Description: Lemma for caucvgprpr 7713. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnbj.b (𝜑𝐵N)
caucvgprprlemnbj.j (𝜑𝐽N)
Assertion
Ref Expression
caucvgprprlemnbj (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Distinct variable groups:   𝐵,𝑘,𝑙,𝑛   𝑢,𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝐽,𝑙,𝑛   𝑢,𝐽
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑙)

Proof of Theorem caucvgprprlemnbj
Dummy variables 𝑝 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . . 7 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
31, 2caucvgprprlemval 7689 . . . . . 6 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
43simprd 114 . . . . 5 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
5 caucvgprprlemnbj.b . . . . . . . . 9 (𝜑𝐵N)
61, 5ffvelcdmd 5654 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ P)
7 recnnpr 7549 . . . . . . . . 9 (𝐵N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
85, 7syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
9 addclpr 7538 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
11 caucvgprprlemnbj.j . . . . . . . 8 (𝜑𝐽N)
12 recnnpr 7549 . . . . . . . 8 (𝐽N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1311, 12syl 14 . . . . . . 7 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
14 ltaddpr 7598 . . . . . . 7 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1510, 13, 14syl2anc 411 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1615adantr 276 . . . . 5 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
17 ltsopr 7597 . . . . . 6 <P Or P
18 ltrelpr 7506 . . . . . 6 <P ⊆ (P × P)
1917, 18sotri 5026 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
204, 16, 19syl2anc 411 . . . 4 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
21 ltaddpr 7598 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
226, 8, 21syl2anc 411 . . . . . . 7 (𝜑 → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2322adantr 276 . . . . . 6 ((𝜑𝐵 = 𝐽) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
24 fveq2 5517 . . . . . . . 8 (𝐵 = 𝐽 → (𝐹𝐵) = (𝐹𝐽))
2524breq1d 4015 . . . . . . 7 (𝐵 = 𝐽 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2625adantl 277 . . . . . 6 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2723, 26mpbid 147 . . . . 5 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2815adantr 276 . . . . 5 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2927, 28, 19syl2anc 411 . . . 4 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
301, 2caucvgprprlemval 7689 . . . . . 6 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3130simpld 112 . . . . 5 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
32 ltaprg 7620 . . . . . . . . 9 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
3332adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P𝑧P)) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
34 addcomprg 7579 . . . . . . . . 9 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3534adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3633, 6, 10, 13, 35caovord2d 6046 . . . . . . 7 (𝜑 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3722, 36mpbid 147 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3837adantr 276 . . . . 5 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3917, 18sotri 5026 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
4031, 38, 39syl2anc 411 . . . 4 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
41 pitri3or 7323 . . . . 5 ((𝐵N𝐽N) → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
425, 11, 41syl2anc 411 . . . 4 (𝜑 → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
4320, 29, 40, 42mpjao3dan 1307 . . 3 (𝜑 → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
441, 11ffvelcdmd 5654 . . . . 5 (𝜑 → (𝐹𝐽) ∈ P)
45 addclpr 7538 . . . . . 6 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4610, 13, 45syl2anc 411 . . . . 5 (𝜑 → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
47 so2nr 4323 . . . . . 6 ((<P Or P ∧ ((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4817, 47mpan 424 . . . . 5 (((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4944, 46, 48syl2anc 411 . . . 4 (𝜑 → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
50 imnan 690 . . . 4 (((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) ↔ ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5149, 50sylibr 134 . . 3 (𝜑 → ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5243, 51mpd 13 . 2 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
53 breq1 4008 . . . . . . 7 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )))
5453cbvabv 2302 . . . . . 6 {𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}
55 breq2 4009 . . . . . . 7 (𝑞 = 𝑢 → ((*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢))
5655cbvabv 2302 . . . . . 6 {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}
5754, 56opeq12i 3785 . . . . 5 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩
5857oveq2i 5888 . . . 4 ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩)
59 breq1 4008 . . . . . 6 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
6059cbvabv 2302 . . . . 5 {𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}
61 breq2 4009 . . . . . 6 (𝑞 = 𝑢 → ((*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢))
6261cbvabv 2302 . . . . 5 {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}
6360, 62opeq12i 3785 . . . 4 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩
6458, 63oveq12i 5889 . . 3 (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) = (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)
6564breq1i 4012 . 2 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽) ↔ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
6652, 65sylnib 676 1 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 977  w3a 978   = wceq 1353  wcel 2148  {cab 2163  wral 2455  cop 3597   class class class wbr 4005   Or wor 4297  wf 5214  cfv 5218  (class class class)co 5877  1oc1o 6412  [cec 6535  Ncnpi 7273   <N clti 7276   ~Q ceq 7280  *Qcrq 7285   <Q cltq 7286  Pcnp 7292   +P cpp 7294  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  caucvgprprlemaddq  7709
  Copyright terms: Public domain W3C validator