| Step | Hyp | Ref
| Expression |
| 1 | | caucvgprpr.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶P) |
| 2 | | caucvgprpr.cau |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
| 3 | 1, 2 | caucvgprprlemval 7755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 4 | 3 | simprd 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 5 | | caucvgprprlemnbj.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ N) |
| 6 | 1, 5 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐵) ∈ P) |
| 7 | | recnnpr 7615 |
. . . . . . . . 9
⊢ (𝐵 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 8 | 5, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 9 | | addclpr 7604 |
. . . . . . . 8
⊢ (((𝐹‘𝐵) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 10 | 6, 8, 9 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 11 | | caucvgprprlemnbj.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ N) |
| 12 | | recnnpr 7615 |
. . . . . . . 8
⊢ (𝐽 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 14 | | ltaddpr 7664 |
. . . . . . 7
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 15 | 10, 13, 14 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 16 | 15 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 17 | | ltsopr 7663 |
. . . . . 6
⊢
<P Or P |
| 18 | | ltrelpr 7572 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
| 19 | 17, 18 | sotri 5065 |
. . . . 5
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 20 | 4, 16, 19 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 21 | | ltaddpr 7664 |
. . . . . . . 8
⊢ (((𝐹‘𝐵) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 22 | 6, 8, 21 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 23 | 22 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 24 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝐵 = 𝐽 → (𝐹‘𝐵) = (𝐹‘𝐽)) |
| 25 | 24 | breq1d 4043 |
. . . . . . 7
⊢ (𝐵 = 𝐽 → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 26 | 25 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 27 | 23, 26 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 28 | 15 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 29 | 27, 28, 19 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 30 | 1, 2 | caucvgprprlemval 7755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 31 | 30 | simpld 112 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 32 | | ltaprg 7686 |
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P
(𝑧
+P 𝑦))) |
| 33 | 32 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P ∧
𝑧 ∈ P))
→ (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P
(𝑧
+P 𝑦))) |
| 34 | | addcomprg 7645 |
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
| 35 | 34 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) →
(𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
| 36 | 33, 6, 10, 13, 35 | caovord2d 6093 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 37 | 22, 36 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 38 | 37 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 39 | 17, 18 | sotri 5065 |
. . . . 5
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 40 | 31, 38, 39 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 41 | | pitri3or 7389 |
. . . . 5
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (𝐵
<N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
| 42 | 5, 11, 41 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝐵 <N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
| 43 | 20, 29, 40, 42 | mpjao3dan 1318 |
. . 3
⊢ (𝜑 → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 44 | 1, 11 | ffvelcdmd 5698 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
| 45 | | addclpr 7604 |
. . . . . 6
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 46 | 10, 13, 45 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 47 | | so2nr 4356 |
. . . . . 6
⊢
((<P Or P ∧ ((𝐹‘𝐽) ∈ P ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P)) →
¬ ((𝐹‘𝐽)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
| 48 | 17, 47 | mpan 424 |
. . . . 5
⊢ (((𝐹‘𝐽) ∈ P ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P) → ¬
((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
| 49 | 44, 46, 48 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ¬ ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
| 50 | | imnan 691 |
. . . 4
⊢ (((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) ↔ ¬ ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
| 51 | 49, 50 | sylibr 134 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
| 52 | 43, 51 | mpd 13 |
. 2
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) |
| 53 | | breq1 4036 |
. . . . . . 7
⊢ (𝑝 = 𝑙 → (𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 54 | 53 | cbvabv 2321 |
. . . . . 6
⊢ {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )} |
| 55 | | breq2 4037 |
. . . . . . 7
⊢ (𝑞 = 𝑢 →
((*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢)) |
| 56 | 55 | cbvabv 2321 |
. . . . . 6
⊢ {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞} = {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢} |
| 57 | 54, 56 | opeq12i 3813 |
. . . . 5
⊢
〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉 |
| 58 | 57 | oveq2i 5933 |
. . . 4
⊢ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) |
| 59 | | breq1 4036 |
. . . . . 6
⊢ (𝑝 = 𝑙 → (𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 60 | 59 | cbvabv 2321 |
. . . . 5
⊢ {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )} |
| 61 | | breq2 4037 |
. . . . . 6
⊢ (𝑞 = 𝑢 →
((*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢)) |
| 62 | 61 | cbvabv 2321 |
. . . . 5
⊢ {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞} = {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢} |
| 63 | 60, 62 | opeq12i 3813 |
. . . 4
⊢
〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉 |
| 64 | 58, 63 | oveq12i 5934 |
. . 3
⊢ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) = (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉) |
| 65 | 64 | breq1i 4040 |
. 2
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽) ↔ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) |
| 66 | 52, 65 | sylnib 677 |
1
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) |