ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj GIF version

Theorem caucvgprprlemnbj 7819
Description: Lemma for caucvgprpr 7838. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnbj.b (𝜑𝐵N)
caucvgprprlemnbj.j (𝜑𝐽N)
Assertion
Ref Expression
caucvgprprlemnbj (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Distinct variable groups:   𝐵,𝑘,𝑙,𝑛   𝑢,𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝐽,𝑙,𝑛   𝑢,𝐽
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑙)

Proof of Theorem caucvgprprlemnbj
Dummy variables 𝑝 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . . 7 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
31, 2caucvgprprlemval 7814 . . . . . 6 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
43simprd 114 . . . . 5 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
5 caucvgprprlemnbj.b . . . . . . . . 9 (𝜑𝐵N)
61, 5ffvelcdmd 5726 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ P)
7 recnnpr 7674 . . . . . . . . 9 (𝐵N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
85, 7syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
9 addclpr 7663 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
11 caucvgprprlemnbj.j . . . . . . . 8 (𝜑𝐽N)
12 recnnpr 7674 . . . . . . . 8 (𝐽N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1311, 12syl 14 . . . . . . 7 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
14 ltaddpr 7723 . . . . . . 7 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1510, 13, 14syl2anc 411 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1615adantr 276 . . . . 5 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
17 ltsopr 7722 . . . . . 6 <P Or P
18 ltrelpr 7631 . . . . . 6 <P ⊆ (P × P)
1917, 18sotri 5084 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
204, 16, 19syl2anc 411 . . . 4 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
21 ltaddpr 7723 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
226, 8, 21syl2anc 411 . . . . . . 7 (𝜑 → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2322adantr 276 . . . . . 6 ((𝜑𝐵 = 𝐽) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
24 fveq2 5586 . . . . . . . 8 (𝐵 = 𝐽 → (𝐹𝐵) = (𝐹𝐽))
2524breq1d 4058 . . . . . . 7 (𝐵 = 𝐽 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2625adantl 277 . . . . . 6 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2723, 26mpbid 147 . . . . 5 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2815adantr 276 . . . . 5 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2927, 28, 19syl2anc 411 . . . 4 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
301, 2caucvgprprlemval 7814 . . . . . 6 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3130simpld 112 . . . . 5 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
32 ltaprg 7745 . . . . . . . . 9 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
3332adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P𝑧P)) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
34 addcomprg 7704 . . . . . . . . 9 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3534adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3633, 6, 10, 13, 35caovord2d 6126 . . . . . . 7 (𝜑 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3722, 36mpbid 147 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3837adantr 276 . . . . 5 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3917, 18sotri 5084 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
4031, 38, 39syl2anc 411 . . . 4 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
41 pitri3or 7448 . . . . 5 ((𝐵N𝐽N) → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
425, 11, 41syl2anc 411 . . . 4 (𝜑 → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
4320, 29, 40, 42mpjao3dan 1320 . . 3 (𝜑 → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
441, 11ffvelcdmd 5726 . . . . 5 (𝜑 → (𝐹𝐽) ∈ P)
45 addclpr 7663 . . . . . 6 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4610, 13, 45syl2anc 411 . . . . 5 (𝜑 → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
47 so2nr 4373 . . . . . 6 ((<P Or P ∧ ((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4817, 47mpan 424 . . . . 5 (((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4944, 46, 48syl2anc 411 . . . 4 (𝜑 → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
50 imnan 692 . . . 4 (((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) ↔ ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5149, 50sylibr 134 . . 3 (𝜑 → ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5243, 51mpd 13 . 2 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
53 breq1 4051 . . . . . . 7 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )))
5453cbvabv 2331 . . . . . 6 {𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}
55 breq2 4052 . . . . . . 7 (𝑞 = 𝑢 → ((*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢))
5655cbvabv 2331 . . . . . 6 {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}
5754, 56opeq12i 3827 . . . . 5 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩
5857oveq2i 5965 . . . 4 ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩)
59 breq1 4051 . . . . . 6 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
6059cbvabv 2331 . . . . 5 {𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}
61 breq2 4052 . . . . . 6 (𝑞 = 𝑢 → ((*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢))
6261cbvabv 2331 . . . . 5 {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}
6360, 62opeq12i 3827 . . . 4 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩
6458, 63oveq12i 5966 . . 3 (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) = (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)
6564breq1i 4055 . 2 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽) ↔ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
6652, 65sylnib 678 1 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980  w3a 981   = wceq 1373  wcel 2177  {cab 2192  wral 2485  cop 3638   class class class wbr 4048   Or wor 4347  wf 5273  cfv 5277  (class class class)co 5954  1oc1o 6505  [cec 6628  Ncnpi 7398   <N clti 7401   ~Q ceq 7405  *Qcrq 7410   <Q cltq 7411  Pcnp 7417   +P cpp 7419  <P cltp 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-iplp 7594  df-iltp 7596
This theorem is referenced by:  caucvgprprlemaddq  7834
  Copyright terms: Public domain W3C validator