ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj GIF version

Theorem caucvgprprlemnbj 7494
Description: Lemma for caucvgprpr 7513. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnbj.b (𝜑𝐵N)
caucvgprprlemnbj.j (𝜑𝐽N)
Assertion
Ref Expression
caucvgprprlemnbj (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Distinct variable groups:   𝐵,𝑘,𝑙,𝑛   𝑢,𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝐽,𝑙,𝑛   𝑢,𝐽
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑙)

Proof of Theorem caucvgprprlemnbj
Dummy variables 𝑝 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . . 7 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
31, 2caucvgprprlemval 7489 . . . . . 6 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
43simprd 113 . . . . 5 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
5 caucvgprprlemnbj.b . . . . . . . . 9 (𝜑𝐵N)
61, 5ffvelrnd 5549 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ P)
7 recnnpr 7349 . . . . . . . . 9 (𝐵N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
85, 7syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
9 addclpr 7338 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
106, 8, 9syl2anc 408 . . . . . . 7 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
11 caucvgprprlemnbj.j . . . . . . . 8 (𝜑𝐽N)
12 recnnpr 7349 . . . . . . . 8 (𝐽N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1311, 12syl 14 . . . . . . 7 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
14 ltaddpr 7398 . . . . . . 7 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1510, 13, 14syl2anc 408 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
1615adantr 274 . . . . 5 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
17 ltsopr 7397 . . . . . 6 <P Or P
18 ltrelpr 7306 . . . . . 6 <P ⊆ (P × P)
1917, 18sotri 4929 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
204, 16, 19syl2anc 408 . . . 4 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
21 ltaddpr 7398 . . . . . . . 8 (((𝐹𝐵) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
226, 8, 21syl2anc 408 . . . . . . 7 (𝜑 → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2322adantr 274 . . . . . 6 ((𝜑𝐵 = 𝐽) → (𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
24 fveq2 5414 . . . . . . . 8 (𝐵 = 𝐽 → (𝐹𝐵) = (𝐹𝐽))
2524breq1d 3934 . . . . . . 7 (𝐵 = 𝐽 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2625adantl 275 . . . . . 6 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2723, 26mpbid 146 . . . . 5 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩))
2815adantr 274 . . . . 5 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2927, 28, 19syl2anc 408 . . . 4 ((𝜑𝐵 = 𝐽) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
301, 2caucvgprprlemval 7489 . . . . . 6 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3130simpld 111 . . . . 5 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
32 ltaprg 7420 . . . . . . . . 9 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
3332adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P𝑧P)) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P (𝑧 +P 𝑦)))
34 addcomprg 7379 . . . . . . . . 9 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3534adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
3633, 6, 10, 13, 35caovord2d 5933 . . . . . . 7 (𝜑 → ((𝐹𝐵)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ↔ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)))
3722, 36mpbid 146 . . . . . 6 (𝜑 → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3837adantr 274 . . . . 5 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3917, 18sotri 4929 . . . . 5 (((𝐹𝐽)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
4031, 38, 39syl2anc 408 . . . 4 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
41 pitri3or 7123 . . . . 5 ((𝐵N𝐽N) → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
425, 11, 41syl2anc 408 . . . 4 (𝜑 → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
4320, 29, 40, 42mpjao3dan 1285 . . 3 (𝜑 → (𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
441, 11ffvelrnd 5549 . . . . 5 (𝜑 → (𝐹𝐽) ∈ P)
45 addclpr 7338 . . . . . 6 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4610, 13, 45syl2anc 408 . . . . 5 (𝜑 → (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
47 so2nr 4238 . . . . . 6 ((<P Or P ∧ ((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4817, 47mpan 420 . . . . 5 (((𝐹𝐽) ∈ P ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
4944, 46, 48syl2anc 408 . . . 4 (𝜑 → ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
50 imnan 679 . . . 4 (((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) ↔ ¬ ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5149, 50sylibr 133 . . 3 (𝜑 → ((𝐹𝐽)<P (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
5243, 51mpd 13 . 2 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
53 breq1 3927 . . . . . . 7 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )))
5453cbvabv 2262 . . . . . 6 {𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}
55 breq2 3928 . . . . . . 7 (𝑞 = 𝑢 → ((*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢))
5655cbvabv 2262 . . . . . 6 {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}
5754, 56opeq12i 3705 . . . . 5 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩
5857oveq2i 5778 . . . 4 ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩)
59 breq1 3927 . . . . . 6 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
6059cbvabv 2262 . . . . 5 {𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}
61 breq2 3928 . . . . . 6 (𝑞 = 𝑢 → ((*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢))
6261cbvabv 2262 . . . . 5 {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}
6360, 62opeq12i 3705 . . . 4 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩
6458, 63oveq12i 5779 . . 3 (((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) = (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)
6564breq1i 3931 . 2 ((((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽) ↔ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
6652, 65sylnib 665 1 (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 961  w3a 962   = wceq 1331  wcel 1480  {cab 2123  wral 2414  cop 3525   class class class wbr 3924   Or wor 4212  wf 5114  cfv 5118  (class class class)co 5767  1oc1o 6299  [cec 6420  Ncnpi 7073   <N clti 7076   ~Q ceq 7080  *Qcrq 7085   <Q cltq 7086  Pcnp 7092   +P cpp 7094  <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  caucvgprprlemaddq  7509
  Copyright terms: Public domain W3C validator