Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶P) |
2 | | caucvgprpr.cau |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
3 | 1, 2 | caucvgprprlemval 7629 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
4 | 3 | simprd 113 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
5 | | caucvgprprlemnbj.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ N) |
6 | 1, 5 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐵) ∈ P) |
7 | | recnnpr 7489 |
. . . . . . . . 9
⊢ (𝐵 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
8 | 5, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
9 | | addclpr 7478 |
. . . . . . . 8
⊢ (((𝐹‘𝐵) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
10 | 6, 8, 9 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
11 | | caucvgprprlemnbj.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ N) |
12 | | recnnpr 7489 |
. . . . . . . 8
⊢ (𝐽 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
13 | 11, 12 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
14 | | ltaddpr 7538 |
. . . . . . 7
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
15 | 10, 13, 14 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
16 | 15 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
17 | | ltsopr 7537 |
. . . . . 6
⊢
<P Or P |
18 | | ltrelpr 7446 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
19 | 17, 18 | sotri 4999 |
. . . . 5
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
20 | 4, 16, 19 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
21 | | ltaddpr 7538 |
. . . . . . . 8
⊢ (((𝐹‘𝐵) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
22 | 6, 8, 21 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
23 | 22 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
24 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝐵 = 𝐽 → (𝐹‘𝐵) = (𝐹‘𝐽)) |
25 | 24 | breq1d 3992 |
. . . . . . 7
⊢ (𝐵 = 𝐽 → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
26 | 25 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉))) |
27 | 23, 26 | mpbid 146 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)) |
28 | 15 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
29 | 27, 28, 19 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
30 | 1, 2 | caucvgprprlemval 7629 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉))) |
31 | 30 | simpld 111 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
32 | | ltaprg 7560 |
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P
(𝑧
+P 𝑦))) |
33 | 32 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P ∧
𝑧 ∈ P))
→ (𝑥<P 𝑦 ↔ (𝑧 +P 𝑥)<P
(𝑧
+P 𝑦))) |
34 | | addcomprg 7519 |
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
35 | 34 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) →
(𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
36 | 33, 6, 10, 13, 35 | caovord2d 6011 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ↔ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉))) |
37 | 22, 36 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
38 | 37 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
39 | 17, 18 | sotri 4999 |
. . . . 5
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
40 | 31, 38, 39 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
41 | | pitri3or 7263 |
. . . . 5
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (𝐵
<N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
42 | 5, 11, 41 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝐵 <N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
43 | 20, 29, 40, 42 | mpjao3dan 1297 |
. . 3
⊢ (𝜑 → (𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
44 | 1, 11 | ffvelrnd 5621 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
45 | | addclpr 7478 |
. . . . . 6
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
46 | 10, 13, 45 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
47 | | so2nr 4299 |
. . . . . 6
⊢
((<P Or P ∧ ((𝐹‘𝐽) ∈ P ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P)) →
¬ ((𝐹‘𝐽)<P
(((𝐹‘𝐵) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
48 | 17, 47 | mpan 421 |
. . . . 5
⊢ (((𝐹‘𝐽) ∈ P ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P) → ¬
((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
49 | 44, 46, 48 | syl2anc 409 |
. . . 4
⊢ (𝜑 → ¬ ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
50 | | imnan 680 |
. . . 4
⊢ (((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) ↔ ¬ ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
51 | 49, 50 | sylibr 133 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐽)<P (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
52 | 43, 51 | mpd 13 |
. 2
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) |
53 | | breq1 3985 |
. . . . . . 7
⊢ (𝑝 = 𝑙 → (𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
54 | 53 | cbvabv 2291 |
. . . . . 6
⊢ {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )} |
55 | | breq2 3986 |
. . . . . . 7
⊢ (𝑞 = 𝑢 →
((*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢)) |
56 | 55 | cbvabv 2291 |
. . . . . 6
⊢ {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞} = {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢} |
57 | 54, 56 | opeq12i 3763 |
. . . . 5
⊢
〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉 |
58 | 57 | oveq2i 5853 |
. . . 4
⊢ ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) |
59 | | breq1 3985 |
. . . . . 6
⊢ (𝑝 = 𝑙 → (𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
60 | 59 | cbvabv 2291 |
. . . . 5
⊢ {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )} |
61 | | breq2 3986 |
. . . . . 6
⊢ (𝑞 = 𝑢 →
((*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢)) |
62 | 61 | cbvabv 2291 |
. . . . 5
⊢ {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞} = {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢} |
63 | 60, 62 | opeq12i 3763 |
. . . 4
⊢
〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉 |
64 | 58, 63 | oveq12i 5854 |
. . 3
⊢ (((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) = (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉) |
65 | 64 | breq1i 3989 |
. 2
⊢ ((((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽) ↔ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) |
66 | 52, 65 | sylnib 666 |
1
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐵, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐵, 1o〉]
~Q ) <Q 𝑢}〉) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) |