Proof of Theorem iseqf1olemqcl
| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemqcl.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 2 | 1 | ad2antrr 488 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
| 3 | | iseqf1olemqcl.j |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 4 | | f1of 5507 |
. . . . . 6
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 5 | 3, 4 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 6 | 5 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 7 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
| 8 | | elfzel1 10116 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| 9 | 7, 8 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℤ) |
| 10 | | elfzel2 10115 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| 11 | 7, 10 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℤ) |
| 12 | | iseqf1olemqcl.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| 13 | | elfzelz 10117 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
| 14 | 12, 13 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 15 | 14 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ) |
| 16 | | peano2zm 9381 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 17 | 15, 16 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ) |
| 18 | 9, 11, 17 | 3jca 1179 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
| 19 | 9 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ) |
| 20 | | elfzelz 10117 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 21 | 7, 20 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ) |
| 22 | 21 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ) |
| 23 | 17 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
| 24 | | elfzle1 10119 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| 25 | 7, 24 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ 𝐾) |
| 26 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
| 27 | | eqcom 2198 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) |
| 28 | 26, 27 | sylnib 677 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) |
| 29 | | elfzle1 10119 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) |
| 30 | 29 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ 𝐴) |
| 31 | | zleloe 9390 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 32 | 21, 15, 31 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 33 | 30, 32 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
| 34 | 28, 33 | ecased 1360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) |
| 35 | | zltlem1 9400 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 36 | 21, 15, 35 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 37 | 34, 36 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) |
| 38 | 19, 22, 23, 25, 37 | letrd 8167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1)) |
| 39 | 15 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
| 40 | 11 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ) |
| 41 | 39 | lem1d 8977 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) |
| 42 | 12 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝑀...𝑁)) |
| 43 | | elfzle2 10120 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) |
| 44 | 42, 43 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ 𝑁) |
| 45 | 23, 39, 40, 41, 44 | letrd 8167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁) |
| 46 | 38, 45 | jca 306 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)) |
| 47 | | elfz2 10107 |
. . . . 5
⊢ ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))) |
| 48 | 18, 46, 47 | sylanbrc 417 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) |
| 49 | 6, 48 | ffvelcdmd 5701 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝑀...𝑁)) |
| 50 | 1, 20 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 51 | | zdceq 9418 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) |
| 52 | 14, 50, 51 | syl2anc 411 |
. . . 4
⊢ (𝜑 → DECID 𝐴 = 𝐾) |
| 53 | 52 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → DECID 𝐴 = 𝐾) |
| 54 | 2, 49, 53 | ifcldadc 3591 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝑀...𝑁)) |
| 55 | 5, 12 | ffvelcdmd 5701 |
. . 3
⊢ (𝜑 → (𝐽‘𝐴) ∈ (𝑀...𝑁)) |
| 56 | 55 | adantr 276 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘𝐴) ∈ (𝑀...𝑁)) |
| 57 | | f1ocnv 5520 |
. . . . . 6
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 58 | | f1of 5507 |
. . . . . 6
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 59 | 3, 57, 58 | 3syl 17 |
. . . . 5
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 60 | 59, 1 | ffvelcdmd 5701 |
. . . 4
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 61 | | elfzelz 10117 |
. . . 4
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 62 | 60, 61 | syl 14 |
. . 3
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 63 | | fzdcel 10132 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐴
∈ (𝐾...(◡𝐽‘𝐾))) |
| 64 | 14, 50, 62, 63 | syl3anc 1249 |
. 2
⊢ (𝜑 → DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 65 | 54, 56, 64 | ifcldadc 3591 |
1
⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |