ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl GIF version

Theorem iseqf1olemqcl 10472
Description: Lemma for seq3f1o 10490. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
Assertion
Ref Expression
iseqf1olemqcl (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 488 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5457 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . 5 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
65ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
71ad2antrr 488 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁))
8 elfzel1 10010 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
97, 8syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℤ)
10 elfzel2 10009 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
117, 10syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℤ)
12 iseqf1olemqcl.a . . . . . . . . 9 (𝜑𝐴 ∈ (𝑀...𝑁))
13 elfzelz 10011 . . . . . . . . 9 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
1412, 13syl 14 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1514ad2antrr 488 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ)
16 peano2zm 9280 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1715, 16syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ)
189, 11, 173jca 1177 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ))
199zred 9364 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ)
20 elfzelz 10011 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
217, 20syl 14 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ)
2221zred 9364 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ)
2317zred 9364 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ)
24 elfzle1 10013 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
257, 24syl 14 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀𝐾)
26 simpr 110 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾)
27 eqcom 2179 . . . . . . . . . 10 (𝐴 = 𝐾𝐾 = 𝐴)
2826, 27sylnib 676 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴)
29 elfzle1 10013 . . . . . . . . . . 11 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐾𝐴)
3029ad2antlr 489 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾𝐴)
31 zleloe 9289 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
3221, 15, 31syl2anc 411 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
3330, 32mpbid 147 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 = 𝐴))
3428, 33ecased 1349 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴)
35 zltlem1 9299 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
3621, 15, 35syl2anc 411 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
3734, 36mpbid 147 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1))
3819, 22, 23, 25, 37letrd 8071 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1))
3915zred 9364 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ)
4011zred 9364 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ)
4139lem1d 8879 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴)
4212ad2antrr 488 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝑀...𝑁))
43 elfzle2 10014 . . . . . . . 8 (𝐴 ∈ (𝑀...𝑁) → 𝐴𝑁)
4442, 43syl 14 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴𝑁)
4523, 39, 40, 41, 44letrd 8071 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁)
4638, 45jca 306 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))
47 elfz2 10002 . . . . 5 ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)))
4818, 46, 47sylanbrc 417 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁))
496, 48ffvelcdmd 5648 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝑀...𝑁))
501, 20syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
51 zdceq 9317 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝐴 = 𝐾)
5214, 50, 51syl2anc 411 . . . 4 (𝜑DECID 𝐴 = 𝐾)
5352adantr 276 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → DECID 𝐴 = 𝐾)
542, 49, 53ifcldadc 3563 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝑀...𝑁))
555, 12ffvelcdmd 5648 . . 3 (𝜑 → (𝐽𝐴) ∈ (𝑀...𝑁))
5655adantr 276 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐴) ∈ (𝑀...𝑁))
57 f1ocnv 5470 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
58 f1of 5457 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
593, 57, 583syl 17 . . . . 5 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
6059, 1ffvelcdmd 5648 . . . 4 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
61 elfzelz 10011 . . . 4 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
6260, 61syl 14 . . 3 (𝜑 → (𝐽𝐾) ∈ ℤ)
63 fzdcel 10026 . . 3 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
6414, 50, 62, 63syl3anc 1238 . 2 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
6554, 56, 64ifcldadc 3563 1 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  ifcif 3534   class class class wbr 4000  ccnv 4622  wf 5208  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  1c1 7803   < clt 7982  cle 7983  cmin 8118  cz 9242  ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by:  iseqf1olemqval  10473  iseqf1olemqf  10477
  Copyright terms: Public domain W3C validator