ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl GIF version

Theorem iseqf1olemqcl 10681
Description: Lemma for seq3f1o 10699. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
Assertion
Ref Expression
iseqf1olemqcl (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 488 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5544 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . 5 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
65ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
71ad2antrr 488 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁))
8 elfzel1 10181 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
97, 8syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℤ)
10 elfzel2 10180 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
117, 10syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℤ)
12 iseqf1olemqcl.a . . . . . . . . 9 (𝜑𝐴 ∈ (𝑀...𝑁))
13 elfzelz 10182 . . . . . . . . 9 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
1412, 13syl 14 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1514ad2antrr 488 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ)
16 peano2zm 9445 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1715, 16syl 14 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ)
189, 11, 173jca 1180 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ))
199zred 9530 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ)
20 elfzelz 10182 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
217, 20syl 14 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ)
2221zred 9530 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ)
2317zred 9530 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ)
24 elfzle1 10184 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
257, 24syl 14 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀𝐾)
26 simpr 110 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾)
27 eqcom 2209 . . . . . . . . . 10 (𝐴 = 𝐾𝐾 = 𝐴)
2826, 27sylnib 678 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴)
29 elfzle1 10184 . . . . . . . . . . 11 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐾𝐴)
3029ad2antlr 489 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾𝐴)
31 zleloe 9454 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
3221, 15, 31syl2anc 411 . . . . . . . . . 10 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
3330, 32mpbid 147 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 = 𝐴))
3428, 33ecased 1362 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴)
35 zltlem1 9465 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
3621, 15, 35syl2anc 411 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
3734, 36mpbid 147 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1))
3819, 22, 23, 25, 37letrd 8231 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1))
3915zred 9530 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ)
4011zred 9530 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ)
4139lem1d 9041 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴)
4212ad2antrr 488 . . . . . . . 8 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝑀...𝑁))
43 elfzle2 10185 . . . . . . . 8 (𝐴 ∈ (𝑀...𝑁) → 𝐴𝑁)
4442, 43syl 14 . . . . . . 7 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴𝑁)
4523, 39, 40, 41, 44letrd 8231 . . . . . 6 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁)
4638, 45jca 306 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))
47 elfz2 10172 . . . . 5 ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)))
4818, 46, 47sylanbrc 417 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁))
496, 48ffvelcdmd 5739 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝑀...𝑁))
501, 20syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
51 zdceq 9483 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝐴 = 𝐾)
5214, 50, 51syl2anc 411 . . . 4 (𝜑DECID 𝐴 = 𝐾)
5352adantr 276 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → DECID 𝐴 = 𝐾)
542, 49, 53ifcldadc 3609 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝑀...𝑁))
555, 12ffvelcdmd 5739 . . 3 (𝜑 → (𝐽𝐴) ∈ (𝑀...𝑁))
5655adantr 276 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐴) ∈ (𝑀...𝑁))
57 f1ocnv 5557 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
58 f1of 5544 . . . . . 6 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
593, 57, 583syl 17 . . . . 5 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
6059, 1ffvelcdmd 5739 . . . 4 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
61 elfzelz 10182 . . . 4 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
6260, 61syl 14 . . 3 (𝜑 → (𝐽𝐾) ∈ ℤ)
63 fzdcel 10197 . . 3 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
6414, 50, 62, 63syl3anc 1250 . 2 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
6554, 56, 64ifcldadc 3609 1 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2178  ifcif 3579   class class class wbr 4059  ccnv 4692  wf 5286  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  1c1 7961   < clt 8142  cle 8143  cmin 8278  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  iseqf1olemqval  10682  iseqf1olemqf  10686
  Copyright terms: Public domain W3C validator