Proof of Theorem iseqf1olemqcl
| Step | Hyp | Ref
 | Expression | 
| 1 |   | iseqf1olemqcl.k | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | 
| 2 | 1 | ad2antrr 488 | 
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁)) | 
| 3 |   | iseqf1olemqcl.j | 
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 4 |   | f1of 5504 | 
. . . . . 6
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 6 | 5 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 7 | 1 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ (𝑀...𝑁)) | 
| 8 |   | elfzel1 10099 | 
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | 
| 9 | 7, 8 | syl 14 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℤ) | 
| 10 |   | elfzel2 10098 | 
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | 
| 11 | 7, 10 | syl 14 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℤ) | 
| 12 |   | iseqf1olemqcl.a | 
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | 
| 13 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 15 | 14 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ) | 
| 16 |   | peano2zm 9364 | 
. . . . . . 7
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) | 
| 17 | 15, 16 | syl 14 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ) | 
| 18 | 9, 11, 17 | 3jca 1179 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) | 
| 19 | 9 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ∈ ℝ) | 
| 20 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | 
| 21 | 7, 20 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ) | 
| 22 | 21 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℝ) | 
| 23 | 17 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) | 
| 24 |   | elfzle1 10102 | 
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | 
| 25 | 7, 24 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ 𝐾) | 
| 26 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) | 
| 27 |   | eqcom 2198 | 
. . . . . . . . . 10
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) | 
| 28 | 26, 27 | sylnib 677 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) | 
| 29 |   | elfzle1 10102 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) | 
| 30 | 29 | ad2antlr 489 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ 𝐴) | 
| 31 |   | zleloe 9373 | 
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) | 
| 32 | 21, 15, 31 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) | 
| 33 | 30, 32 | mpbid 147 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) | 
| 34 | 28, 33 | ecased 1360 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) | 
| 35 |   | zltlem1 9383 | 
. . . . . . . . 9
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) | 
| 36 | 21, 15, 35 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) | 
| 37 | 34, 36 | mpbid 147 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) | 
| 38 | 19, 22, 23, 25, 37 | letrd 8150 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑀 ≤ (𝐴 − 1)) | 
| 39 | 15 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) | 
| 40 | 11 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝑁 ∈ ℝ) | 
| 41 | 39 | lem1d 8960 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) | 
| 42 | 12 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝑀...𝑁)) | 
| 43 |   | elfzle2 10103 | 
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) | 
| 44 | 42, 43 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ 𝑁) | 
| 45 | 23, 39, 40, 41, 44 | letrd 8150 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝑁) | 
| 46 | 38, 45 | jca 306 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁)) | 
| 47 |   | elfz2 10090 | 
. . . . 5
⊢ ((𝐴 − 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝑀 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ 𝑁))) | 
| 48 | 18, 46, 47 | sylanbrc 417 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝑀...𝑁)) | 
| 49 | 6, 48 | ffvelcdmd 5698 | 
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝑀...𝑁)) | 
| 50 | 1, 20 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) | 
| 51 |   | zdceq 9401 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) | 
| 52 | 14, 50, 51 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → DECID 𝐴 = 𝐾) | 
| 53 | 52 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → DECID 𝐴 = 𝐾) | 
| 54 | 2, 49, 53 | ifcldadc 3590 | 
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝑀...𝑁)) | 
| 55 | 5, 12 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (𝐽‘𝐴) ∈ (𝑀...𝑁)) | 
| 56 | 55 | adantr 276 | 
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘𝐴) ∈ (𝑀...𝑁)) | 
| 57 |   | f1ocnv 5517 | 
. . . . . 6
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 58 |   | f1of 5504 | 
. . . . . 6
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 59 | 3, 57, 58 | 3syl 17 | 
. . . . 5
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 60 | 59, 1 | ffvelcdmd 5698 | 
. . . 4
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) | 
| 61 |   | elfzelz 10100 | 
. . . 4
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) | 
| 62 | 60, 61 | syl 14 | 
. . 3
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) | 
| 63 |   | fzdcel 10115 | 
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐴
∈ (𝐾...(◡𝐽‘𝐾))) | 
| 64 | 14, 50, 62, 63 | syl3anc 1249 | 
. 2
⊢ (𝜑 → DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 65 | 54, 56, 64 | ifcldadc 3590 | 
1
⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |