Proof of Theorem iseqf1olemnab
Step | Hyp | Ref
| Expression |
1 | | iseqf1olemnab.eq |
. . . 4
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
2 | 1 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
3 | | iseqf1olemqcl.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
4 | | iseqf1olemqcl.j |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
5 | | iseqf1olemqcl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
6 | | iseqf1olemnab.q |
. . . . . . 7
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
7 | 3, 4, 5, 6 | iseqf1olemqval 10422 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
8 | 7 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
9 | | simprl 521 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
10 | 9 | iftrued 3527 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
11 | 8, 10 | eqtrd 2198 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
12 | | f1ocnvfv2 5746 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
13 | 4, 3, 12 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
14 | 13 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
15 | | f1ofn 5433 |
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽 Fn (𝑀...𝑁)) |
16 | 4, 15 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 Fn (𝑀...𝑁)) |
17 | 16 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁)) |
18 | | elfzuz 9956 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
19 | | fzss1 9998 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...(◡𝐽‘𝐾))) |
20 | 3, 18, 19 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...(◡𝐽‘𝐾))) |
21 | | f1ocnv 5445 |
. . . . . . . . . . . 12
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
22 | | f1of 5432 |
. . . . . . . . . . . 12
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
23 | 4, 21, 22 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
24 | 23, 3 | ffvelrnd 5621 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
25 | | elfzuz3 9957 |
. . . . . . . . . 10
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(◡𝐽‘𝐾))) |
26 | | fzss2 9999 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘(◡𝐽‘𝐾)) → (𝑀...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
28 | 20, 27 | sstrd 3152 |
. . . . . . . 8
⊢ (𝜑 → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
29 | 28 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
30 | | elfzubelfz 9971 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
31 | 30 | adantr 274 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
32 | 31 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
33 | | fnfvima 5719 |
. . . . . . 7
⊢ ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁) ∧ (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘(◡𝐽‘𝐾)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
34 | 17, 29, 32, 33 | syl3anc 1228 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(◡𝐽‘𝐾)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
35 | 14, 34 | eqeltrrd 2244 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
36 | 16 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁)) |
37 | 28 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
38 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐾 ∈ (𝑀...𝑁)) |
39 | | elfzelz 9960 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
40 | 38, 39 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐾 ∈ ℤ) |
41 | 40 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ) |
42 | 24 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
43 | | elfzelz 9960 |
. . . . . . . . 9
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
44 | 42, 43 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ ℤ) |
45 | 5 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ (𝑀...𝑁)) |
46 | | elfzelz 9960 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
47 | 45, 46 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ ℤ) |
48 | 47 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ) |
49 | | peano2zm 9229 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
50 | 48, 49 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ) |
51 | 41, 44, 50 | 3jca 1167 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
52 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
53 | | eqcom 2167 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) |
54 | 52, 53 | sylnib 666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) |
55 | 9 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
56 | | elfzle1 9962 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ 𝐴) |
58 | | zleloe 9238 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
59 | 41, 48, 58 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
60 | 57, 59 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
61 | 54, 60 | ecased 1339 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) |
62 | | zltlem1 9248 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
63 | 41, 48, 62 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
64 | 61, 63 | mpbid 146 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) |
65 | 50 | zred 9313 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
66 | 48 | zred 9313 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
67 | 44 | zred 9313 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ ℝ) |
68 | 66 | lem1d 8828 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) |
69 | | elfzle2 9963 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐴 ≤ (◡𝐽‘𝐾)) |
70 | 55, 69 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (◡𝐽‘𝐾)) |
71 | 65, 66, 67, 68, 70 | letrd 8022 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ (◡𝐽‘𝐾)) |
72 | 64, 71 | jca 304 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (◡𝐽‘𝐾))) |
73 | | elfz2 9951 |
. . . . . . 7
⊢ ((𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (◡𝐽‘𝐾)))) |
74 | 51, 72, 73 | sylanbrc 414 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾))) |
75 | | fnfvima 5719 |
. . . . . 6
⊢ ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
76 | 36, 37, 74, 75 | syl3anc 1228 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
77 | | zdceq 9266 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) |
78 | 47, 40, 77 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → DECID 𝐴 = 𝐾) |
79 | 35, 76, 78 | ifcldadc 3549 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
80 | 11, 79 | eqeltrd 2243 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
81 | 2, 80 | eqeltrrd 2244 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
82 | | iseqf1olemnab.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
83 | 3, 4, 82, 6 | iseqf1olemqval 10422 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
84 | 83 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
85 | | simprr 522 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
86 | 85 | iffalsed 3530 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = (𝐽‘𝐵)) |
87 | 84, 86 | eqtrd 2198 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) = (𝐽‘𝐵)) |
88 | | f1of1 5431 |
. . . . . . 7
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
89 | 4, 88 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
90 | | f1elima 5741 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
91 | 89, 82, 28, 90 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
92 | 91 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
93 | 85, 92 | mtbird 663 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ (𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
94 | 87, 93 | eqneltrd 2262 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ (𝑄‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
95 | 81, 94 | pm2.65da 651 |
1
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |