ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnab GIF version

Theorem iseqf1olemnab 10610
Description: Lemma for seq3f1o 10626. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemnab.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemnab.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
iseqf1olemnab.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemnab (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemnab
StepHypRef Expression
1 iseqf1olemnab.eq . . . 4 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
21adantr 276 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = (𝑄𝐵))
3 iseqf1olemqcl.k . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
4 iseqf1olemqcl.j . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemqcl.a . . . . . . 7 (𝜑𝐴 ∈ (𝑀...𝑁))
6 iseqf1olemnab.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
73, 4, 5, 6iseqf1olemqval 10609 . . . . . 6 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
87adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
9 simprl 529 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
109iftrued 3569 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))))
118, 10eqtrd 2229 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))))
12 f1ocnvfv2 5828 . . . . . . . 8 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
134, 3, 12syl2anc 411 . . . . . . 7 (𝜑 → (𝐽‘(𝐽𝐾)) = 𝐾)
1413ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
15 f1ofn 5508 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽 Fn (𝑀...𝑁))
164, 15syl 14 . . . . . . . 8 (𝜑𝐽 Fn (𝑀...𝑁))
1716ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁))
18 elfzuz 10113 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
19 fzss1 10155 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...(𝐽𝐾)))
203, 18, 193syl 17 . . . . . . . . 9 (𝜑 → (𝐾...(𝐽𝐾)) ⊆ (𝑀...(𝐽𝐾)))
21 f1ocnv 5520 . . . . . . . . . . . 12 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
22 f1of 5507 . . . . . . . . . . . 12 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
234, 21, 223syl 17 . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2423, 3ffvelcdmd 5701 . . . . . . . . . 10 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
25 elfzuz3 10114 . . . . . . . . . 10 ((𝐽𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐽𝐾)))
26 fzss2 10156 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝐽𝐾)) → (𝑀...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2724, 25, 263syl 17 . . . . . . . . 9 (𝜑 → (𝑀...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2820, 27sstrd 3194 . . . . . . . 8 (𝜑 → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2928ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
30 elfzubelfz 10128 . . . . . . . . 9 (𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
3130adantr 276 . . . . . . . 8 ((𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
3231ad2antlr 489 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
33 fnfvima 5800 . . . . . . 7 ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐽𝐾) ∈ (𝐾...(𝐽𝐾))) → (𝐽‘(𝐽𝐾)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3417, 29, 32, 33syl3anc 1249 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(𝐽𝐾)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3514, 34eqeltrrd 2274 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3616ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁))
3728ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
383adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐾 ∈ (𝑀...𝑁))
39 elfzelz 10117 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
4038, 39syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐾 ∈ ℤ)
4140adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ)
4224ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ (𝑀...𝑁))
43 elfzelz 10117 . . . . . . . . 9 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
4442, 43syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ ℤ)
455adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ (𝑀...𝑁))
46 elfzelz 10117 . . . . . . . . . . 11 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
4745, 46syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ ℤ)
4847adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ)
49 peano2zm 9381 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
5048, 49syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ)
5141, 44, 503jca 1179 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ))
52 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾)
53 eqcom 2198 . . . . . . . . . . 11 (𝐴 = 𝐾𝐾 = 𝐴)
5452, 53sylnib 677 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴)
559adantr 276 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
56 elfzle1 10119 . . . . . . . . . . . 12 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐾𝐴)
5755, 56syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾𝐴)
58 zleloe 9390 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
5941, 48, 58syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
6057, 59mpbid 147 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 = 𝐴))
6154, 60ecased 1360 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴)
62 zltlem1 9400 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
6341, 48, 62syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
6461, 63mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1))
6550zred 9465 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ)
6648zred 9465 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ)
6744zred 9465 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ ℝ)
6866lem1d 8977 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴)
69 elfzle2 10120 . . . . . . . . . 10 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐴 ≤ (𝐽𝐾))
7055, 69syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (𝐽𝐾))
7165, 66, 67, 68, 70letrd 8167 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ (𝐽𝐾))
7264, 71jca 306 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (𝐽𝐾)))
73 elfz2 10107 . . . . . . 7 ((𝐴 − 1) ∈ (𝐾...(𝐽𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (𝐽𝐾))))
7451, 72, 73sylanbrc 417 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝐾...(𝐽𝐾)))
75 fnfvima 5800 . . . . . 6 ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝐾...(𝐽𝐾))) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
7636, 37, 74, 75syl3anc 1249 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
77 zdceq 9418 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝐴 = 𝐾)
7847, 40, 77syl2anc 411 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → DECID 𝐴 = 𝐾)
7935, 76, 78ifcldadc 3591 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
8011, 79eqeltrd 2273 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
812, 80eqeltrrd 2274 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
82 iseqf1olemnab.b . . . . . 6 (𝜑𝐵 ∈ (𝑀...𝑁))
833, 4, 82, 6iseqf1olemqval 10609 . . . . 5 (𝜑 → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
8483adantr 276 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
85 simprr 531 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
8685iffalsed 3572 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)) = (𝐽𝐵))
8784, 86eqtrd 2229 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) = (𝐽𝐵))
88 f1of1 5506 . . . . . . 7 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
894, 88syl 14 . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
90 f1elima 5823 . . . . . 6 ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁)) → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9189, 82, 28, 90syl3anc 1249 . . . . 5 (𝜑 → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9291adantr 276 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9385, 92mtbird 674 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ (𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
9487, 93eqneltrd 2292 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ (𝑄𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
9581, 94pm2.65da 662 1 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wss 3157  ifcif 3562   class class class wbr 4034  cmpt 4095  ccnv 4663  cima 4667   Fn wfn 5254  wf 5255  1-1wf1 5256  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  1c1 7897   < clt 8078  cle 8079  cmin 8214  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  iseqf1olemmo  10614
  Copyright terms: Public domain W3C validator