Proof of Theorem iseqf1olemnab
| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemnab.eq |
. . . 4
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 2 | 1 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 3 | | iseqf1olemqcl.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 4 | | iseqf1olemqcl.j |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 5 | | iseqf1olemqcl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| 6 | | iseqf1olemnab.q |
. . . . . . 7
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| 7 | 3, 4, 5, 6 | iseqf1olemqval 10592 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 9 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 10 | 9 | iftrued 3568 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 11 | 8, 10 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 12 | | f1ocnvfv2 5825 |
. . . . . . . 8
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 13 | 4, 3, 12 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 14 | 13 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 15 | | f1ofn 5505 |
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽 Fn (𝑀...𝑁)) |
| 16 | 4, 15 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 Fn (𝑀...𝑁)) |
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁)) |
| 18 | | elfzuz 10096 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 19 | | fzss1 10138 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...(◡𝐽‘𝐾))) |
| 20 | 3, 18, 19 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...(◡𝐽‘𝐾))) |
| 21 | | f1ocnv 5517 |
. . . . . . . . . . . 12
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 22 | | f1of 5504 |
. . . . . . . . . . . 12
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 23 | 4, 21, 22 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 24 | 23, 3 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 25 | | elfzuz3 10097 |
. . . . . . . . . 10
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(◡𝐽‘𝐾))) |
| 26 | | fzss2 10139 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘(◡𝐽‘𝐾)) → (𝑀...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
| 27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
| 28 | 20, 27 | sstrd 3193 |
. . . . . . . 8
⊢ (𝜑 → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
| 29 | 28 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
| 30 | | elfzubelfz 10111 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
| 31 | 30 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
| 32 | 31 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) |
| 33 | | fnfvima 5797 |
. . . . . . 7
⊢ ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁) ∧ (◡𝐽‘𝐾) ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘(◡𝐽‘𝐾)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 34 | 17, 29, 32, 33 | syl3anc 1249 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(◡𝐽‘𝐾)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 35 | 14, 34 | eqeltrrd 2274 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 36 | 16 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁)) |
| 37 | 28 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) |
| 38 | 3 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐾 ∈ (𝑀...𝑁)) |
| 39 | | elfzelz 10100 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐾 ∈ ℤ) |
| 41 | 40 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ) |
| 42 | 24 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 43 | | elfzelz 10100 |
. . . . . . . . 9
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ ℤ) |
| 45 | 5 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ (𝑀...𝑁)) |
| 46 | | elfzelz 10100 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
| 47 | 45, 46 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → 𝐴 ∈ ℤ) |
| 48 | 47 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ) |
| 49 | | peano2zm 9364 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ) |
| 51 | 41, 44, 50 | 3jca 1179 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈
ℤ)) |
| 52 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾) |
| 53 | | eqcom 2198 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐾 ↔ 𝐾 = 𝐴) |
| 54 | 52, 53 | sylnib 677 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴) |
| 55 | 9 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 56 | | elfzle1 10102 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝐴) |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ 𝐴) |
| 58 | | zleloe 9373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 59 | 41, 48, 58 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ 𝐴 ↔ (𝐾 < 𝐴 ∨ 𝐾 = 𝐴))) |
| 60 | 57, 59 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ∨ 𝐾 = 𝐴)) |
| 61 | 54, 60 | ecased 1360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴) |
| 62 | | zltlem1 9383 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 63 | 41, 48, 62 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴 ↔ 𝐾 ≤ (𝐴 − 1))) |
| 64 | 61, 63 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1)) |
| 65 | 50 | zred 9448 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ) |
| 66 | 48 | zred 9448 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ) |
| 67 | 44 | zred 9448 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (◡𝐽‘𝐾) ∈ ℝ) |
| 68 | 66 | lem1d 8960 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴) |
| 69 | | elfzle2 10103 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐴 ≤ (◡𝐽‘𝐾)) |
| 70 | 55, 69 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (◡𝐽‘𝐾)) |
| 71 | 65, 66, 67, 68, 70 | letrd 8150 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ (◡𝐽‘𝐾)) |
| 72 | 64, 71 | jca 306 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (◡𝐽‘𝐾))) |
| 73 | | elfz2 10090 |
. . . . . . 7
⊢ ((𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (◡𝐽‘𝐾)))) |
| 74 | 51, 72, 73 | sylanbrc 417 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾))) |
| 75 | | fnfvima 5797 |
. . . . . 6
⊢ ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 76 | 36, 37, 74, 75 | syl3anc 1249 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 77 | | zdceq 9401 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
DECID 𝐴 =
𝐾) |
| 78 | 47, 40, 77 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → DECID 𝐴 = 𝐾) |
| 79 | 35, 76, 78 | ifcldadc 3590 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 80 | 11, 79 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐴) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 81 | 2, 80 | eqeltrrd 2274 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 82 | | iseqf1olemnab.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
| 83 | 3, 4, 82, 6 | iseqf1olemqval 10592 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
| 84 | 83 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
| 85 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 86 | 85 | iffalsed 3571 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = (𝐽‘𝐵)) |
| 87 | 84, 86 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → (𝑄‘𝐵) = (𝐽‘𝐵)) |
| 88 | | f1of1 5503 |
. . . . . . 7
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 89 | 4, 88 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 90 | | f1elima 5820 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁) ∧ (𝐾...(◡𝐽‘𝐾)) ⊆ (𝑀...𝑁)) → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 91 | 89, 82, 28, 90 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 92 | 91 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ((𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾))) ↔ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 93 | 85, 92 | mtbird 674 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ (𝐽‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 94 | 87, 93 | eqneltrd 2292 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) → ¬ (𝑄‘𝐵) ∈ (𝐽 “ (𝐾...(◡𝐽‘𝐾)))) |
| 95 | 81, 94 | pm2.65da 662 |
1
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |