ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnab GIF version

Theorem iseqf1olemnab 10261
Description: Lemma for seq3f1o 10277. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemnab.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemnab.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
iseqf1olemnab.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemnab (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemnab
StepHypRef Expression
1 iseqf1olemnab.eq . . . 4 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
21adantr 274 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = (𝑄𝐵))
3 iseqf1olemqcl.k . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
4 iseqf1olemqcl.j . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemqcl.a . . . . . . 7 (𝜑𝐴 ∈ (𝑀...𝑁))
6 iseqf1olemnab.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
73, 4, 5, 6iseqf1olemqval 10260 . . . . . 6 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
87adantr 274 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
9 simprl 520 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
109iftrued 3481 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))))
118, 10eqtrd 2172 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))))
12 f1ocnvfv2 5679 . . . . . . . 8 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
134, 3, 12syl2anc 408 . . . . . . 7 (𝜑 → (𝐽‘(𝐽𝐾)) = 𝐾)
1413ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
15 f1ofn 5368 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽 Fn (𝑀...𝑁))
164, 15syl 14 . . . . . . . 8 (𝜑𝐽 Fn (𝑀...𝑁))
1716ad2antrr 479 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁))
18 elfzuz 9802 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
19 fzss1 9843 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...(𝐽𝐾)))
203, 18, 193syl 17 . . . . . . . . 9 (𝜑 → (𝐾...(𝐽𝐾)) ⊆ (𝑀...(𝐽𝐾)))
21 f1ocnv 5380 . . . . . . . . . . . 12 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
22 f1of 5367 . . . . . . . . . . . 12 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
234, 21, 223syl 17 . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2423, 3ffvelrnd 5556 . . . . . . . . . 10 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
25 elfzuz3 9803 . . . . . . . . . 10 ((𝐽𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐽𝐾)))
26 fzss2 9844 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝐽𝐾)) → (𝑀...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2724, 25, 263syl 17 . . . . . . . . 9 (𝜑 → (𝑀...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2820, 27sstrd 3107 . . . . . . . 8 (𝜑 → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
2928ad2antrr 479 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
30 elfzubelfz 9816 . . . . . . . . 9 (𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
3130adantr 274 . . . . . . . 8 ((𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
3231ad2antlr 480 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽𝐾) ∈ (𝐾...(𝐽𝐾)))
33 fnfvima 5652 . . . . . . 7 ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐽𝐾) ∈ (𝐾...(𝐽𝐾))) → (𝐽‘(𝐽𝐾)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3417, 29, 32, 33syl3anc 1216 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → (𝐽‘(𝐽𝐾)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3514, 34eqeltrrd 2217 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ 𝐴 = 𝐾) → 𝐾 ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
3616ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐽 Fn (𝑀...𝑁))
3728ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁))
383adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐾 ∈ (𝑀...𝑁))
39 elfzelz 9806 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
4038, 39syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐾 ∈ ℤ)
4140adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ∈ ℤ)
4224ad2antrr 479 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ (𝑀...𝑁))
43 elfzelz 9806 . . . . . . . . 9 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
4442, 43syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ ℤ)
455adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ (𝑀...𝑁))
46 elfzelz 9806 . . . . . . . . . . 11 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
4745, 46syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → 𝐴 ∈ ℤ)
4847adantr 274 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℤ)
49 peano2zm 9092 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
5048, 49syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℤ)
5141, 44, 503jca 1161 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ))
52 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐴 = 𝐾)
53 eqcom 2141 . . . . . . . . . . 11 (𝐴 = 𝐾𝐾 = 𝐴)
5452, 53sylnib 665 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → ¬ 𝐾 = 𝐴)
559adantr 274 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
56 elfzle1 9807 . . . . . . . . . . . 12 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐾𝐴)
5755, 56syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾𝐴)
58 zleloe 9101 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
5941, 48, 58syl2anc 408 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾𝐴 ↔ (𝐾 < 𝐴𝐾 = 𝐴)))
6057, 59mpbid 146 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 = 𝐴))
6154, 60ecased 1327 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 < 𝐴)
62 zltlem1 9111 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
6341, 48, 62syl2anc 408 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 < 𝐴𝐾 ≤ (𝐴 − 1)))
6461, 63mpbid 146 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐾 ≤ (𝐴 − 1))
6550zred 9173 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ ℝ)
6648zred 9173 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ∈ ℝ)
6744zred 9173 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽𝐾) ∈ ℝ)
6866lem1d 8691 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ 𝐴)
69 elfzle2 9808 . . . . . . . . . 10 (𝐴 ∈ (𝐾...(𝐽𝐾)) → 𝐴 ≤ (𝐽𝐾))
7055, 69syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → 𝐴 ≤ (𝐽𝐾))
7165, 66, 67, 68, 70letrd 7886 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ≤ (𝐽𝐾))
7264, 71jca 304 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (𝐽𝐾)))
73 elfz2 9797 . . . . . . 7 ((𝐴 − 1) ∈ (𝐾...(𝐽𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (𝐾 ≤ (𝐴 − 1) ∧ (𝐴 − 1) ≤ (𝐽𝐾))))
7451, 72, 73sylanbrc 413 . . . . . 6 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐴 − 1) ∈ (𝐾...(𝐽𝐾)))
75 fnfvima 5652 . . . . . 6 ((𝐽 Fn (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁) ∧ (𝐴 − 1) ∈ (𝐾...(𝐽𝐾))) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
7636, 37, 74, 75syl3anc 1216 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) ∧ ¬ 𝐴 = 𝐾) → (𝐽‘(𝐴 − 1)) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
77 zdceq 9126 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝐴 = 𝐾)
7847, 40, 77syl2anc 408 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → DECID 𝐴 = 𝐾)
7935, 76, 78ifcldadc 3501 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
8011, 79eqeltrd 2216 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐴) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
812, 80eqeltrrd 2217 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
82 iseqf1olemnab.b . . . . . 6 (𝜑𝐵 ∈ (𝑀...𝑁))
833, 4, 82, 6iseqf1olemqval 10260 . . . . 5 (𝜑 → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
8483adantr 274 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
85 simprr 521 . . . . 5 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
8685iffalsed 3484 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)) = (𝐽𝐵))
8784, 86eqtrd 2172 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → (𝑄𝐵) = (𝐽𝐵))
88 f1of1 5366 . . . . . . 7 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
894, 88syl 14 . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
90 f1elima 5674 . . . . . 6 ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁) ∧ (𝐾...(𝐽𝐾)) ⊆ (𝑀...𝑁)) → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9189, 82, 28, 90syl3anc 1216 . . . . 5 (𝜑 → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9291adantr 274 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ((𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))) ↔ 𝐵 ∈ (𝐾...(𝐽𝐾))))
9385, 92mtbird 662 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ (𝐽𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
9487, 93eqneltrd 2235 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))) → ¬ (𝑄𝐵) ∈ (𝐽 “ (𝐾...(𝐽𝐾))))
9581, 94pm2.65da 650 1 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wss 3071  ifcif 3474   class class class wbr 3929  cmpt 3989  ccnv 4538  cima 4542   Fn wfn 5118  wf 5119  1-1wf1 5120  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  1c1 7621   < clt 7800  cle 7801  cmin 7933  cz 9054  cuz 9326  ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  iseqf1olemmo  10265
  Copyright terms: Public domain W3C validator