Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsn0el | GIF version |
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelelxp 4640 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
2 | 1 | con2i 622 | . . . 4 ⊢ (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V)) |
3 | dmsnm 5076 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
4 | 2, 3 | sylnib 671 | . . 3 ⊢ (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) |
5 | alnex 1492 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) |
7 | eq0 3433 | . 2 ⊢ (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) | |
8 | 6, 7 | sylibr 133 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1346 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 {csn 3583 × cxp 4609 dom cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-dm 4621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |