ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el GIF version

Theorem dmsn0el 5135
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4688 . . . . 5 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
21con2i 628 . . . 4 (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V))
3 dmsnm 5131 . . . 4 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3sylnib 677 . . 3 (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
5 alnex 1510 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
64, 5sylibr 134 . 2 (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
7 eq0 3465 . 2 (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
86, 7sylibr 134 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1362   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  c0 3446  {csn 3618   × cxp 4657  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator