| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsn0el | GIF version | ||
| Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
| Ref | Expression |
|---|---|
| dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelelxp 4722 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
| 2 | 1 | con2i 628 | . . . 4 ⊢ (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V)) |
| 3 | dmsnm 5167 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 4 | 2, 3 | sylnib 678 | . . 3 ⊢ (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 5 | alnex 1523 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) |
| 7 | eq0 3487 | . 2 ⊢ (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) | |
| 8 | 6, 7 | sylibr 134 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 {csn 3643 × cxp 4691 dom cdm 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-dm 4703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |