ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el GIF version

Theorem dmsn0el 5073
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4633 . . . . 5 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
21con2i 617 . . . 4 (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V))
3 dmsnm 5069 . . . 4 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3sylnib 666 . . 3 (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
5 alnex 1487 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
64, 5sylibr 133 . 2 (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
7 eq0 3427 . 2 (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
86, 7sylibr 133 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  c0 3409  {csn 3576   × cxp 4602  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator