ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el GIF version

Theorem dmsn0el 5139
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4692 . . . . 5 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
21con2i 628 . . . 4 (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V))
3 dmsnm 5135 . . . 4 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3sylnib 677 . . 3 (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
5 alnex 1513 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
64, 5sylibr 134 . 2 (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
7 eq0 3469 . 2 (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
86, 7sylibr 134 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1362   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  c0 3450  {csn 3622   × cxp 4661  dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-dm 4673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator