| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsn0el | GIF version | ||
| Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
| Ref | Expression |
|---|---|
| dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelelxp 4704 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
| 2 | 1 | con2i 628 | . . . 4 ⊢ (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V)) |
| 3 | dmsnm 5148 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 4 | 2, 3 | sylnib 678 | . . 3 ⊢ (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 5 | alnex 1522 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) |
| 7 | eq0 3479 | . 2 ⊢ (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) | |
| 8 | 6, 7 | sylibr 134 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 ∅c0 3460 {csn 3633 × cxp 4673 dom cdm 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-dm 4685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |