![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsn0el | GIF version |
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelelxp 4688 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
2 | 1 | con2i 628 | . . . 4 ⊢ (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V)) |
3 | dmsnm 5131 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
4 | 2, 3 | sylnib 677 | . . 3 ⊢ (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) |
5 | alnex 1510 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
6 | 4, 5 | sylibr 134 | . 2 ⊢ (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) |
7 | eq0 3465 | . 2 ⊢ (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴}) | |
8 | 6, 7 | sylibr 134 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∅c0 3446 {csn 3618 × cxp 4657 dom cdm 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-dm 4669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |