ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzneuz GIF version

Theorem fzneuz 9722
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
Assertion
Ref Expression
fzneuz ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))

Proof of Theorem fzneuz
StepHypRef Expression
1 peano2uz 9228 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (𝑁 + 1) ∈ (ℤ𝐾))
21adantl 273 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑁 + 1) ∈ (ℤ𝐾))
3 eluzelz 9185 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 zre 8910 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
54ltp1d 8546 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1))
6 peano2z 8942 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
7 zltnle 8952 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
86, 7mpdan 415 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
95, 8mpbid 146 . . . . . . 7 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁)
103, 9syl 14 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ≤ 𝑁)
11 elfzle2 9649 . . . . . 6 ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁)
1210, 11nsyl 598 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
1312ad2antrr 475 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
14 nelneq2 2201 . . . 4 (((𝑁 + 1) ∈ (ℤ𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
152, 13, 14syl2anc 406 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
16 eqcom 2102 . . 3 ((ℤ𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ𝐾))
1715, 16sylnib 642 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
18 eluzfz2 9653 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
1918ad2antrr 475 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (𝑀...𝑁))
20 nelneq2 2201 . . 3 ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
2119, 20sylancom 414 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
22 simpr 109 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
233adantr 272 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
24 eluzdc 9254 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝐾))
2522, 23, 24syl2anc 406 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝐾))
26 df-dc 787 . . 3 (DECID 𝑁 ∈ (ℤ𝐾) ↔ (𝑁 ∈ (ℤ𝐾) ∨ ¬ 𝑁 ∈ (ℤ𝐾)))
2725, 26sylib 121 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ ¬ 𝑁 ∈ (ℤ𝐾)))
2817, 21, 27mpjaodan 753 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  DECID wdc 786   = wceq 1299  wcel 1448   class class class wbr 3875  cfv 5059  (class class class)co 5706  1c1 7501   + caddc 7503   < clt 7672  cle 7673  cz 8906  cuz 9176  ...cfz 9631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator