Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzneuz | GIF version |
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
fzneuz | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2uz 9521 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) | |
2 | 1 | adantl 275 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) |
3 | eluzelz 9475 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | zre 9195 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | 4 | ltp1d 8825 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1)) |
6 | peano2z 9227 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
7 | zltnle 9237 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
8 | 6, 7 | mpdan 418 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
9 | 5, 8 | mpbid 146 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁) |
10 | 3, 9 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ≤ 𝑁) |
11 | elfzle2 9963 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
12 | 10, 11 | nsyl 618 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
13 | 12 | ad2antrr 480 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
14 | nelneq2 2268 | . . . 4 ⊢ (((𝑁 + 1) ∈ (ℤ≥‘𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) | |
15 | 2, 13, 14 | syl2anc 409 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) |
16 | eqcom 2167 | . . 3 ⊢ ((ℤ≥‘𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
17 | 15, 16 | sylnib 666 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
18 | eluzfz2 9967 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
19 | 18 | ad2antrr 480 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (𝑀...𝑁)) |
20 | nelneq2 2268 | . . 3 ⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
21 | 19, 20 | sylancom 417 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
22 | simpr 109 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
23 | 3 | adantr 274 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
24 | eluzdc 9548 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) | |
25 | 22, 23, 24 | syl2anc 409 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) |
26 | df-dc 825 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) | |
27 | 25, 26 | sylib 121 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) |
28 | 17, 21, 27 | mpjaodan 788 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |