| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzneuz | GIF version | ||
| Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
| Ref | Expression |
|---|---|
| fzneuz | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz 9774 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) |
| 3 | eluzelz 9727 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 4 | zre 9446 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | 4 | ltp1d 9073 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1)) |
| 6 | peano2z 9478 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 7 | zltnle 9488 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
| 8 | 6, 7 | mpdan 421 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
| 9 | 5, 8 | mpbid 147 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁) |
| 10 | 3, 9 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ≤ 𝑁) |
| 11 | elfzle2 10220 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
| 12 | 10, 11 | nsyl 631 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
| 13 | 12 | ad2antrr 488 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
| 14 | nelneq2 2331 | . . . 4 ⊢ (((𝑁 + 1) ∈ (ℤ≥‘𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) | |
| 15 | 2, 13, 14 | syl2anc 411 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) |
| 16 | eqcom 2231 | . . 3 ⊢ ((ℤ≥‘𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
| 17 | 15, 16 | sylnib 680 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| 18 | eluzfz2 10224 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 19 | 18 | ad2antrr 488 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (𝑀...𝑁)) |
| 20 | nelneq2 2331 | . . 3 ⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
| 21 | 19, 20 | sylancom 420 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| 22 | simpr 110 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 23 | 3 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
| 24 | eluzdc 9801 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 25 | 22, 23, 24 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) |
| 26 | df-dc 840 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 27 | 25, 26 | sylib 122 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 28 | 17, 21, 27 | mpjaodan 803 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 1c1 7996 + caddc 7998 < clt 8177 ≤ cle 8178 ℤcz 9442 ℤ≥cuz 9718 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |