![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzneuz | GIF version |
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
fzneuz | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2uz 9228 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) | |
2 | 1 | adantl 273 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) |
3 | eluzelz 9185 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | zre 8910 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | 4 | ltp1d 8546 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1)) |
6 | peano2z 8942 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
7 | zltnle 8952 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
8 | 6, 7 | mpdan 415 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
9 | 5, 8 | mpbid 146 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁) |
10 | 3, 9 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ≤ 𝑁) |
11 | elfzle2 9649 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
12 | 10, 11 | nsyl 598 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
13 | 12 | ad2antrr 475 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
14 | nelneq2 2201 | . . . 4 ⊢ (((𝑁 + 1) ∈ (ℤ≥‘𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) | |
15 | 2, 13, 14 | syl2anc 406 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) |
16 | eqcom 2102 | . . 3 ⊢ ((ℤ≥‘𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
17 | 15, 16 | sylnib 642 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
18 | eluzfz2 9653 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
19 | 18 | ad2antrr 475 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (𝑀...𝑁)) |
20 | nelneq2 2201 | . . 3 ⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
21 | 19, 20 | sylancom 414 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
22 | simpr 109 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
23 | 3 | adantr 272 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
24 | eluzdc 9254 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) | |
25 | 22, 23, 24 | syl2anc 406 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) |
26 | df-dc 787 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) | |
27 | 25, 26 | sylib 121 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) |
28 | 17, 21, 27 | mpjaodan 753 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 670 DECID wdc 786 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 1c1 7501 + caddc 7503 < clt 7672 ≤ cle 7673 ℤcz 8906 ℤ≥cuz 9176 ...cfz 9631 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |