| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzneuz | GIF version | ||
| Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
| Ref | Expression |
|---|---|
| fzneuz | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz 9657 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) |
| 3 | eluzelz 9610 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 4 | zre 9330 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | 4 | ltp1d 8957 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1)) |
| 6 | peano2z 9362 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 7 | zltnle 9372 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
| 8 | 6, 7 | mpdan 421 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
| 9 | 5, 8 | mpbid 147 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁) |
| 10 | 3, 9 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ≤ 𝑁) |
| 11 | elfzle2 10103 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
| 12 | 10, 11 | nsyl 629 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
| 13 | 12 | ad2antrr 488 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
| 14 | nelneq2 2298 | . . . 4 ⊢ (((𝑁 + 1) ∈ (ℤ≥‘𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) | |
| 15 | 2, 13, 14 | syl2anc 411 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) |
| 16 | eqcom 2198 | . . 3 ⊢ ((ℤ≥‘𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
| 17 | 15, 16 | sylnib 677 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| 18 | eluzfz2 10107 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 19 | 18 | ad2antrr 488 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (𝑀...𝑁)) |
| 20 | nelneq2 2298 | . . 3 ⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
| 21 | 19, 20 | sylancom 420 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| 22 | simpr 110 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 23 | 3 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
| 24 | eluzdc 9684 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 25 | 22, 23, 24 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝐾)) |
| 26 | df-dc 836 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 27 | 25, 26 | sylib 122 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 28 | 17, 21, 27 | mpjaodan 799 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1c1 7880 + caddc 7882 < clt 8061 ≤ cle 8062 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |