ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3val GIF version

Theorem exp3val 10519
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
exp3val ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem exp3val
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 7972 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ 𝑁 = 0) → 1 ∈ ℂ)
2 simp1 997 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 𝐴 ∈ ℂ)
3 nnuz 9561 . . . . . . . 8 ℕ = (ℤ‘1)
4 1zzd 9278 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℤ)
5 fvconst2g 5730 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
6 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ)
75, 6eqeltrd 2254 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
8 mulcl 7937 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
103, 4, 7, 9seqf 10458 . . . . . . 7 (𝐴 ∈ ℂ → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
112, 10syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
1211ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
13 simp2 998 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 𝑁 ∈ ℤ)
1413ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℤ)
15 simpr 110 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 0 < 𝑁)
16 elnnz 9261 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1714, 15, 16sylanbrc 417 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
1812, 17ffvelcdmd 5652 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ ℂ)
1911ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
2013ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℤ)
2120znegcld 9375 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ)
22 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁)
23 simplr 528 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0)
24 eqcom 2179 . . . . . . . . . . . 12 (𝑁 = 0 ↔ 0 = 𝑁)
2523, 24sylnib 676 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 = 𝑁)
26 ioran 752 . . . . . . . . . . 11 (¬ (0 < 𝑁 ∨ 0 = 𝑁) ↔ (¬ 0 < 𝑁 ∧ ¬ 0 = 𝑁))
2722, 25, 26sylanbrc 417 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ (0 < 𝑁 ∨ 0 = 𝑁))
28 0zd 9263 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ∈ ℤ)
29 zleloe 9298 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
3028, 20, 29syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
3127, 30mtbird 673 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 ≤ 𝑁)
32 zltnle 9297 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 < 0 ↔ ¬ 0 ≤ 𝑁))
3320, 28, 32syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ ¬ 0 ≤ 𝑁))
3431, 33mpbird 167 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0)
3520zred 9373 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ)
3635lt0neg1d 8470 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
3734, 36mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁)
38 elnnz 9261 . . . . . . 7 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
3921, 37, 38sylanbrc 417 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ)
4019, 39ffvelcdmd 5652 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘-𝑁) ∈ ℂ)
412ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 ∈ ℂ)
42 simpll3 1038 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 ∨ 0 ≤ 𝑁))
4331, 42ecased 1349 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 # 0)
4441, 43, 39exp3vallem 10518 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘-𝑁) # 0)
4540, 44recclapd 8736 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ ℂ)
46 0zd 9263 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → 0 ∈ ℤ)
47 simpl2 1001 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
48 zdclt 9328 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
4946, 47, 48syl2anc 411 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
5018, 45, 49ifcldadc 3563 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ ℂ)
51 0zd 9263 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 0 ∈ ℤ)
52 zdceq 9326 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
5313, 51, 52syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → DECID 𝑁 = 0)
541, 50, 53ifcldadc 3563 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ ℂ)
55 sneq 3603 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
5655xpeq2d 4650 . . . . . . 7 (𝑥 = 𝐴 → (ℕ × {𝑥}) = (ℕ × {𝐴}))
5756seqeq3d 10450 . . . . . 6 (𝑥 = 𝐴 → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
5857fveq1d 5517 . . . . 5 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑦))
5957fveq1d 5517 . . . . . 6 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑦))
6059oveq2d 5890 . . . . 5 (𝑥 = 𝐴 → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))
6158, 60ifeq12d 3553 . . . 4 (𝑥 = 𝐴 → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦))))
6261ifeq2d 3552 . . 3 (𝑥 = 𝐴 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))))
63 eqeq1 2184 . . . 4 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
64 breq2 4007 . . . . 5 (𝑦 = 𝑁 → (0 < 𝑦 ↔ 0 < 𝑁))
65 fveq2 5515 . . . . 5 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
66 negeq 8148 . . . . . . 7 (𝑦 = 𝑁 → -𝑦 = -𝑁)
6766fveq2d 5519 . . . . . 6 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
6867oveq2d 5890 . . . . 5 (𝑦 = 𝑁 → (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
6964, 65, 68ifbieq12d 3560 . . . 4 (𝑦 = 𝑁 → if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
7063, 69ifbieq2d 3558 . . 3 (𝑦 = 𝑁 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
71 df-exp 10517 . . 3 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
7262, 70, 71ovmpog 6008 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ ℂ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
7354, 72syld3an3 1283 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  ifcif 3534  {csn 3592   class class class wbr 4003   × cxp 4624  wf 5212  cfv 5216  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   · cmul 7815   < clt 7990  cle 7991  -cneg 8127   # cap 8536   / cdiv 8627  cn 8917  cz 9251  seqcseq 10442  cexp 10516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-n0 9175  df-z 9252  df-uz 9527  df-seqfrec 10443  df-exp 10517
This theorem is referenced by:  expnnval  10520  exp0  10521  expnegap0  10525
  Copyright terms: Public domain W3C validator