ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3val GIF version

Theorem exp3val 10399
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
exp3val ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem exp3val
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 7873 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ 𝑁 = 0) → 1 ∈ ℂ)
2 simp1 982 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 𝐴 ∈ ℂ)
3 nnuz 9453 . . . . . . . 8 ℕ = (ℤ‘1)
4 1zzd 9173 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℤ)
5 fvconst2g 5674 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
6 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ)
75, 6eqeltrd 2231 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
8 mulcl 7838 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
103, 4, 7, 9seqf 10338 . . . . . . 7 (𝐴 ∈ ℂ → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
112, 10syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
1211ad2antrr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
13 simp2 983 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 𝑁 ∈ ℤ)
1413ad2antrr 480 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℤ)
15 simpr 109 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 0 < 𝑁)
16 elnnz 9156 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1714, 15, 16sylanbrc 414 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
1812, 17ffvelrnd 5596 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ ℂ)
1911ad2antrr 480 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
2013ad2antrr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℤ)
2120znegcld 9267 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ)
22 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁)
23 simplr 520 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0)
24 eqcom 2156 . . . . . . . . . . . 12 (𝑁 = 0 ↔ 0 = 𝑁)
2523, 24sylnib 666 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 = 𝑁)
26 ioran 742 . . . . . . . . . . 11 (¬ (0 < 𝑁 ∨ 0 = 𝑁) ↔ (¬ 0 < 𝑁 ∧ ¬ 0 = 𝑁))
2722, 25, 26sylanbrc 414 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ (0 < 𝑁 ∨ 0 = 𝑁))
28 0zd 9158 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ∈ ℤ)
29 zleloe 9193 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
3028, 20, 29syl2anc 409 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
3127, 30mtbird 663 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 ≤ 𝑁)
32 zltnle 9192 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 < 0 ↔ ¬ 0 ≤ 𝑁))
3320, 28, 32syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ ¬ 0 ≤ 𝑁))
3431, 33mpbird 166 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0)
3520zred 9265 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ)
3635lt0neg1d 8369 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
3734, 36mpbid 146 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁)
38 elnnz 9156 . . . . . . 7 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
3921, 37, 38sylanbrc 414 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ)
4019, 39ffvelrnd 5596 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘-𝑁) ∈ ℂ)
412ad2antrr 480 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 ∈ ℂ)
42 simpll3 1023 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 ∨ 0 ≤ 𝑁))
4331, 42ecased 1328 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 # 0)
4441, 43, 39exp3vallem 10398 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}))‘-𝑁) # 0)
4540, 44recclapd 8633 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ ℂ)
46 0zd 9158 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → 0 ∈ ℤ)
47 simpl2 986 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
48 zdclt 9220 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
4946, 47, 48syl2anc 409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
5018, 45, 49ifcldadc 3530 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ ℂ)
51 0zd 9158 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → 0 ∈ ℤ)
52 zdceq 9218 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
5313, 51, 52syl2anc 409 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → DECID 𝑁 = 0)
541, 50, 53ifcldadc 3530 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ ℂ)
55 sneq 3567 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
5655xpeq2d 4603 . . . . . . 7 (𝑥 = 𝐴 → (ℕ × {𝑥}) = (ℕ × {𝐴}))
5756seqeq3d 10330 . . . . . 6 (𝑥 = 𝐴 → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
5857fveq1d 5463 . . . . 5 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑦))
5957fveq1d 5463 . . . . . 6 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑦))
6059oveq2d 5830 . . . . 5 (𝑥 = 𝐴 → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))
6158, 60ifeq12d 3520 . . . 4 (𝑥 = 𝐴 → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦))))
6261ifeq2d 3519 . . 3 (𝑥 = 𝐴 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))))
63 eqeq1 2161 . . . 4 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
64 breq2 3965 . . . . 5 (𝑦 = 𝑁 → (0 < 𝑦 ↔ 0 < 𝑁))
65 fveq2 5461 . . . . 5 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
66 negeq 8047 . . . . . . 7 (𝑦 = 𝑁 → -𝑦 = -𝑁)
6766fveq2d 5465 . . . . . 6 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
6867oveq2d 5830 . . . . 5 (𝑦 = 𝑁 → (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
6964, 65, 68ifbieq12d 3527 . . . 4 (𝑦 = 𝑁 → if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
7063, 69ifbieq2d 3525 . . 3 (𝑦 = 𝑁 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}))‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
71 df-exp 10397 . . 3 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
7262, 70, 71ovmpog 5945 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ ℂ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
7354, 72syld3an3 1262 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wcel 2125  ifcif 3501  {csn 3556   class class class wbr 3961   × cxp 4577  wf 5159  cfv 5163  (class class class)co 5814  cc 7709  0cc0 7711  1c1 7712   · cmul 7716   < clt 7891  cle 7892  -cneg 8026   # cap 8435   / cdiv 8524  cn 8812  cz 9146  seqcseq 10322  cexp 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-seqfrec 10323  df-exp 10397
This theorem is referenced by:  expnnval  10400  exp0  10401  expnegap0  10405
  Copyright terms: Public domain W3C validator