ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem2 GIF version

Theorem ordtriexmidlem2 4576
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4577 or weak linearity in ordsoexmid 4618) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem2 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordtriexmidlem2
StepHypRef Expression
1 noel 3468 . . 3 ¬ ∅ ∈ ∅
2 eleq2 2270 . . 3 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ ∅))
31, 2mtbiri 677 . 2 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})
4 0ex 4179 . . . 4 ∅ ∈ V
54snid 3669 . . 3 ∅ ∈ {∅}
6 biidd 172 . . . 4 (𝑥 = ∅ → (𝜑𝜑))
76elrab3 2934 . . 3 (∅ ∈ {∅} → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
85, 7ax-mp 5 . 2 (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
93, 8sylnib 678 1 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wcel 2177  {crab 2489  c0 3464  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3172  df-nul 3465  df-sn 3644
This theorem is referenced by:  ordtriexmid  4577  ontriexmidim  4578  ordtri2orexmid  4579  ontr2exmid  4581  onsucsssucexmid  4583  ordsoexmid  4618  0elsucexmid  4621  ordpwsucexmid  4626
  Copyright terms: Public domain W3C validator