Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem2 | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4498 or weak linearity in ordsoexmid 4539) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem2 | ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | eleq2 2230 | . . 3 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ ∅)) | |
3 | 1, 2 | mtbiri 665 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
4 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
5 | 4 | snid 3607 | . . 3 ⊢ ∅ ∈ {∅} |
6 | biidd 171 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜑)) | |
7 | 6 | elrab3 2883 | . . 3 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
9 | 3, 8 | sylnib 666 | 1 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2448 ∅c0 3409 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-nul 3410 df-sn 3582 |
This theorem is referenced by: ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 |
Copyright terms: Public domain | W3C validator |