![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem2 | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4522 or weak linearity in ordsoexmid 4563) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem2 | ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3428 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | eleq2 2241 | . . 3 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ ∅)) | |
3 | 1, 2 | mtbiri 675 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
4 | 0ex 4132 | . . . 4 ⊢ ∅ ∈ V | |
5 | 4 | snid 3625 | . . 3 ⊢ ∅ ∈ {∅} |
6 | biidd 172 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜑)) | |
7 | 6 | elrab3 2896 | . . 3 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
9 | 3, 8 | sylnib 676 | 1 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {crab 2459 ∅c0 3424 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4131 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-dif 3133 df-nul 3425 df-sn 3600 |
This theorem is referenced by: ordtriexmid 4522 ontriexmidim 4523 ordtri2orexmid 4524 ontr2exmid 4526 onsucsssucexmid 4528 ordsoexmid 4563 0elsucexmid 4566 ordpwsucexmid 4571 |
Copyright terms: Public domain | W3C validator |