| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem2 | GIF version | ||
| Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4577 or weak linearity in ordsoexmid 4618) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.) |
| Ref | Expression |
|---|---|
| ordtriexmidlem2 | ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3468 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | eleq2 2270 | . . 3 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 677 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
| 4 | 0ex 4179 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | 4 | snid 3669 | . . 3 ⊢ ∅ ∈ {∅} |
| 6 | biidd 172 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜑)) | |
| 7 | 6 | elrab3 2934 | . . 3 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 9 | 3, 8 | sylnib 678 | 1 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {crab 2489 ∅c0 3464 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-dif 3172 df-nul 3465 df-sn 3644 |
| This theorem is referenced by: ordtriexmid 4577 ontriexmidim 4578 ordtri2orexmid 4579 ontr2exmid 4581 onsucsssucexmid 4583 ordsoexmid 4618 0elsucexmid 4621 ordpwsucexmid 4626 |
| Copyright terms: Public domain | W3C validator |