ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcl GIF version

Theorem caovcl 6031
Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovcl.1 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caovcl ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovcl
StepHypRef Expression
1 tru 1357 . 2
2 caovcl.1 . . . 4 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)
32adantl 277 . . 3 ((⊤ ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
43caovclg 6029 . 2 ((⊤ ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝑆)
51, 4mpan 424 1 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wtru 1354  wcel 2148  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  ecopovtrn  6634  ecopovtrng  6637  genpelvl  7513  genpelvu  7514  genpml  7518  genpmu  7519  genprndl  7522  genprndu  7523  genpassl  7525  genpassu  7526  genpassg  7527  expcllem  10533
  Copyright terms: Public domain W3C validator