| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcl | GIF version | ||
| Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovcl.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovcl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 | . 2 ⊢ ⊤ | |
| 2 | caovcl.1 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 4 | 3 | caovclg 6122 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝑆) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊤wtru 1374 ∈ wcel 2178 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ecopovtrn 6742 ecopovtrng 6745 genpelvl 7660 genpelvu 7661 genpml 7665 genpmu 7666 genprndl 7669 genprndu 7670 genpassl 7672 genpassu 7673 genpassg 7674 expcllem 10732 |
| Copyright terms: Public domain | W3C validator |