Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovass | GIF version |
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
Ref | Expression |
---|---|
caovass.1 | ⊢ 𝐴 ∈ V |
caovass.2 | ⊢ 𝐵 ∈ V |
caovass.3 | ⊢ 𝐶 ∈ V |
caovass.4 | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caovass | ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovass.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovass.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | caovass.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | tru 1352 | . . 3 ⊢ ⊤ | |
5 | caovass.4 | . . . . 5 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 5 | a1i 9 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
7 | 6 | caovassg 6011 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
8 | 4, 7 | mpan 422 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
9 | 1, 2, 3, 8 | mp3an 1332 | 1 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∧ w3a 973 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 Vcvv 2730 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: caov32 6040 caov12 6041 caov31 6042 caov13 6043 |
Copyright terms: Public domain | W3C validator |