![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovass | GIF version |
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
Ref | Expression |
---|---|
caovass.1 | ⊢ 𝐴 ∈ V |
caovass.2 | ⊢ 𝐵 ∈ V |
caovass.3 | ⊢ 𝐶 ∈ V |
caovass.4 | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caovass | ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovass.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovass.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | caovass.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | tru 1357 | . . 3 ⊢ ⊤ | |
5 | caovass.4 | . . . . 5 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 5 | a1i 9 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
7 | 6 | caovassg 6036 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
8 | 4, 7 | mpan 424 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
9 | 1, 2, 3, 8 | mp3an 1337 | 1 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∧ w3a 978 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 Vcvv 2739 (class class class)co 5878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 |
This theorem is referenced by: caov32 6065 caov12 6066 caov31 6067 caov13 6068 |
Copyright terms: Public domain | W3C validator |