![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uni0b | GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3465 | . . . 4 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
2 | 1 | ralbii 2500 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
3 | ralcom4 2782 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
5 | dfss3 3169 | . . 3 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
6 | velsn 3635 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
7 | 6 | ralbii 2500 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
8 | 5, 7 | bitri 184 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
9 | eluni2 3839 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 9 | notbii 669 | . . . 4 ⊢ (¬ 𝑦 ∈ ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
11 | 10 | albii 1481 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
12 | eq0 3465 | . . 3 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴) | |
13 | ralnex 2482 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
14 | 13 | albii 1481 | . . 3 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
15 | 11, 12, 14 | 3bitr4i 212 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
16 | 4, 8, 15 | 3bitr4ri 213 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 ∅c0 3446 {csn 3618 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-uni 3836 |
This theorem is referenced by: uni0c 3861 uni0 3862 |
Copyright terms: Public domain | W3C validator |