ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0b GIF version

Theorem uni0b 3814
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})

Proof of Theorem uni0b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3427 . . . 4 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
21ralbii 2472 . . 3 (∀𝑥𝐴 𝑥 = ∅ ↔ ∀𝑥𝐴𝑦 ¬ 𝑦𝑥)
3 ralcom4 2748 . . 3 (∀𝑥𝐴𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦𝑥𝐴 ¬ 𝑦𝑥)
42, 3bitri 183 . 2 (∀𝑥𝐴 𝑥 = ∅ ↔ ∀𝑦𝑥𝐴 ¬ 𝑦𝑥)
5 dfss3 3132 . . 3 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
6 velsn 3593 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
76ralbii 2472 . . 3 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
85, 7bitri 183 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
9 eluni2 3793 . . . . 5 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
109notbii 658 . . . 4 𝑦 𝐴 ↔ ¬ ∃𝑥𝐴 𝑦𝑥)
1110albii 1458 . . 3 (∀𝑦 ¬ 𝑦 𝐴 ↔ ∀𝑦 ¬ ∃𝑥𝐴 𝑦𝑥)
12 eq0 3427 . . 3 ( 𝐴 = ∅ ↔ ∀𝑦 ¬ 𝑦 𝐴)
13 ralnex 2454 . . . 4 (∀𝑥𝐴 ¬ 𝑦𝑥 ↔ ¬ ∃𝑥𝐴 𝑦𝑥)
1413albii 1458 . . 3 (∀𝑦𝑥𝐴 ¬ 𝑦𝑥 ↔ ∀𝑦 ¬ ∃𝑥𝐴 𝑦𝑥)
1511, 12, 143bitr4i 211 . 2 ( 𝐴 = ∅ ↔ ∀𝑦𝑥𝐴 ¬ 𝑦𝑥)
164, 8, 153bitr4ri 212 1 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116  c0 3409  {csn 3576   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790
This theorem is referenced by:  uni0c  3815  uni0  3816
  Copyright terms: Public domain W3C validator