![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uni0b | GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3443 | . . . 4 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
2 | 1 | ralbii 2483 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
3 | ralcom4 2761 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
5 | dfss3 3147 | . . 3 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
6 | velsn 3611 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
7 | 6 | ralbii 2483 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
8 | 5, 7 | bitri 184 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
9 | eluni2 3815 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 9 | notbii 668 | . . . 4 ⊢ (¬ 𝑦 ∈ ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
11 | 10 | albii 1470 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
12 | eq0 3443 | . . 3 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴) | |
13 | ralnex 2465 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
14 | 13 | albii 1470 | . . 3 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
15 | 11, 12, 14 | 3bitr4i 212 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
16 | 4, 8, 15 | 3bitr4ri 213 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ⊆ wss 3131 ∅c0 3424 {csn 3594 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-uni 3812 |
This theorem is referenced by: uni0c 3837 uni0 3838 |
Copyright terms: Public domain | W3C validator |