Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uni0b | GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3432 | . . . 4 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
2 | 1 | ralbii 2476 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
3 | ralcom4 2752 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
5 | dfss3 3137 | . . 3 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
6 | velsn 3598 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
7 | 6 | ralbii 2476 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
8 | 5, 7 | bitri 183 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
9 | eluni2 3798 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 9 | notbii 663 | . . . 4 ⊢ (¬ 𝑦 ∈ ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
11 | 10 | albii 1463 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
12 | eq0 3432 | . . 3 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴) | |
13 | ralnex 2458 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
14 | 13 | albii 1463 | . . 3 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
15 | 11, 12, 14 | 3bitr4i 211 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
16 | 4, 8, 15 | 3bitr4ri 212 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∅c0 3414 {csn 3581 ∪ cuni 3794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3587 df-uni 3795 |
This theorem is referenced by: uni0c 3820 uni0 3821 |
Copyright terms: Public domain | W3C validator |