| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uni0b | GIF version | ||
| Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3510 | . . . 4 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 2 | 1 | ralbii 2536 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| 3 | ralcom4 2822 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
| 5 | dfss3 3213 | . . 3 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
| 6 | velsn 3683 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 7 | 6 | ralbii 2536 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 8 | 5, 7 | bitri 184 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 9 | eluni2 3891 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 10 | 9 | notbii 672 | . . . 4 ⊢ (¬ 𝑦 ∈ ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 11 | 10 | albii 1516 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 12 | eq0 3510 | . . 3 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ∪ 𝐴) | |
| 13 | ralnex 2518 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 14 | 13 | albii 1516 | . . 3 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 15 | 11, 12, 14 | 3bitr4i 212 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑦∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝑥) |
| 16 | 4, 8, 15 | 3bitr4ri 213 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 {csn 3666 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-uni 3888 |
| This theorem is referenced by: uni0c 3913 uni0 3914 |
| Copyright terms: Public domain | W3C validator |