![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpexg | GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpexg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3602 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prexg 4213 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → {𝐴, 𝐵} ∈ V) | |
3 | snexg 4186 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → {𝐶} ∈ V) | |
4 | 2, 3 | anim12i 338 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
5 | 4 | 3impa 1194 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
6 | unexg 4445 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) |
8 | 1, 7 | eqeltrid 2264 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 Vcvv 2739 ∪ cun 3129 {csn 3594 {cpr 3595 {ctp 3596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-uni 3812 |
This theorem is referenced by: prdsex 12723 imasex 12731 imasival 12732 imasbas 12733 imasplusg 12734 ring1 13241 |
Copyright terms: Public domain | W3C validator |