ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpexg GIF version

Theorem tpexg 4532
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
Assertion
Ref Expression
tpexg ((𝐴𝑈𝐵𝑉𝐶𝑊) → {𝐴, 𝐵, 𝐶} ∈ V)

Proof of Theorem tpexg
StepHypRef Expression
1 df-tp 3674 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prexg 4294 . . . . 5 ((𝐴𝑈𝐵𝑉) → {𝐴, 𝐵} ∈ V)
3 snexg 4267 . . . . 5 (𝐶𝑊 → {𝐶} ∈ V)
42, 3anim12i 338 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V))
543impa 1218 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V))
6 unexg 4531 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V)
75, 6syl 14 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V)
81, 7eqeltrid 2316 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → {𝐴, 𝐵, 𝐶} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  Vcvv 2799  cun 3195  {csn 3666  {cpr 3667  {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-uni 3888
This theorem is referenced by:  prdsex  13288  prdsval  13292  imasex  13324  imasival  13325  imasbas  13326  imasplusg  13327  ring1  14008  psrval  14615  fnpsr  14616
  Copyright terms: Public domain W3C validator