ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpexg GIF version

Theorem tpexg 4422
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
Assertion
Ref Expression
tpexg ((𝐴𝑈𝐵𝑉𝐶𝑊) → {𝐴, 𝐵, 𝐶} ∈ V)

Proof of Theorem tpexg
StepHypRef Expression
1 df-tp 3584 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prexg 4189 . . . . 5 ((𝐴𝑈𝐵𝑉) → {𝐴, 𝐵} ∈ V)
3 snexg 4163 . . . . 5 (𝐶𝑊 → {𝐶} ∈ V)
42, 3anim12i 336 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V))
543impa 1184 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V))
6 unexg 4421 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V)
75, 6syl 14 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V)
81, 7eqeltrid 2253 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → {𝐴, 𝐵, 𝐶} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  Vcvv 2726  cun 3114  {csn 3576  {cpr 3577  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-tp 3584  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator