| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpexg | GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpexg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3631 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prexg 4245 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → {𝐴, 𝐵} ∈ V) | |
| 3 | snexg 4218 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → {𝐶} ∈ V) | |
| 4 | 2, 3 | anim12i 338 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
| 5 | 4 | 3impa 1196 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
| 6 | unexg 4479 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) |
| 8 | 1, 7 | eqeltrid 2283 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3623 {cpr 3624 {ctp 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-uni 3841 |
| This theorem is referenced by: prdsex 12971 prdsval 12975 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 ring1 13691 psrval 14296 fnpsr 14297 |
| Copyright terms: Public domain | W3C validator |