Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpexg | GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpexg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3591 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prexg 4196 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → {𝐴, 𝐵} ∈ V) | |
3 | snexg 4170 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → {𝐶} ∈ V) | |
4 | 2, 3 | anim12i 336 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
5 | 4 | 3impa 1189 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V)) |
6 | unexg 4428 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ V) |
8 | 1, 7 | eqeltrid 2257 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {csn 3583 {cpr 3584 {ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-uni 3797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |