ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisng GIF version

Theorem unisng 3856
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem unisng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3633 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21unieqd 3850 . . 3 (𝑥 = 𝐴 {𝑥} = {𝐴})
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2211 . 2 (𝑥 = 𝐴 → ( {𝑥} = 𝑥 {𝐴} = 𝐴))
5 vex 2766 . . 3 𝑥 ∈ V
65unisn 3855 . 2 {𝑥} = 𝑥
74, 6vtoclg 2824 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {csn 3622   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  dfnfc2  3857  unisucg  4449  unisn3  4480  opswapg  5156  funfvdm  5624  en2other2  7263  lspuni0  13980  lss0v  13986
  Copyright terms: Public domain W3C validator