| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisng | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | unieqd 3898 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥} = ∪ {𝐴}) |
| 3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2244 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥} = 𝑥 ↔ ∪ {𝐴} = 𝐴)) |
| 5 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 6 | 5 | unisn 3903 | . 2 ⊢ ∪ {𝑥} = 𝑥 |
| 7 | 4, 6 | vtoclg 2861 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {csn 3666 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: dfnfc2 3905 unisucg 4502 unisn3 4533 opswapg 5211 funfvdm 5690 en2other2 7362 lspuni0 14373 lss0v 14379 |
| Copyright terms: Public domain | W3C validator |