ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisng GIF version

Theorem unisng 3806
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem unisng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3587 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21unieqd 3800 . . 3 (𝑥 = 𝐴 {𝑥} = {𝐴})
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2180 . 2 (𝑥 = 𝐴 → ( {𝑥} = 𝑥 {𝐴} = 𝐴))
5 vex 2729 . . 3 𝑥 ∈ V
65unisn 3805 . 2 {𝑥} = 𝑥
74, 6vtoclg 2786 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {csn 3576   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790
This theorem is referenced by:  dfnfc2  3807  unisucg  4392  unisn3  4423  opswapg  5090  funfvdm  5549  en2other2  7152
  Copyright terms: Public domain W3C validator