![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unisng | GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3629 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | unieqd 3846 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥} = ∪ {𝐴}) |
3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2208 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥} = 𝑥 ↔ ∪ {𝐴} = 𝐴)) |
5 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | unisn 3851 | . 2 ⊢ ∪ {𝑥} = 𝑥 |
7 | 4, 6 | vtoclg 2820 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {csn 3618 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-uni 3836 |
This theorem is referenced by: dfnfc2 3853 unisucg 4445 unisn3 4476 opswapg 5152 funfvdm 5620 en2other2 7256 lspuni0 13920 lss0v 13926 |
Copyright terms: Public domain | W3C validator |