Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisng | GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3600 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | unieqd 3816 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥} = ∪ {𝐴}) |
3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2190 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥} = 𝑥 ↔ ∪ {𝐴} = 𝐴)) |
5 | vex 2738 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | unisn 3821 | . 2 ⊢ ∪ {𝑥} = 𝑥 |
7 | 4, 6 | vtoclg 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 {csn 3589 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 |
This theorem is referenced by: dfnfc2 3823 unisucg 4408 unisn3 4439 opswapg 5107 funfvdm 5571 en2other2 7185 |
Copyright terms: Public domain | W3C validator |