Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisng | GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | unieqd 3800 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥} = ∪ {𝐴}) |
3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2180 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥} = 𝑥 ↔ ∪ {𝐴} = 𝐴)) |
5 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | unisn 3805 | . 2 ⊢ ∪ {𝑥} = 𝑥 |
7 | 4, 6 | vtoclg 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {csn 3576 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: dfnfc2 3807 unisucg 4392 unisn3 4423 opswapg 5090 funfvdm 5549 en2other2 7152 |
Copyright terms: Public domain | W3C validator |