ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisng GIF version

Theorem unisng 3870
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem unisng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3646 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21unieqd 3864 . . 3 (𝑥 = 𝐴 {𝑥} = {𝐴})
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2221 . 2 (𝑥 = 𝐴 → ( {𝑥} = 𝑥 {𝐴} = 𝐴))
5 vex 2776 . . 3 𝑥 ∈ V
65unisn 3869 . 2 {𝑥} = 𝑥
74, 6vtoclg 2835 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {csn 3635   cuni 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3172  df-sn 3641  df-pr 3642  df-uni 3854
This theorem is referenced by:  dfnfc2  3871  unisucg  4466  unisn3  4497  opswapg  5175  funfvdm  5652  en2other2  7317  lspuni0  14236  lss0v  14242
  Copyright terms: Public domain W3C validator