ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abnexg GIF version

Theorem abnexg 4492
Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6202. Note that the second antecedent 𝑥𝐴𝑥𝐹 cannot be translated to 𝐴𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4494 and pwnex 4495 respectively, proved from abnex 4493, which is a consequence of abnexg 4492 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.)
Assertion
Ref Expression
abnexg (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem abnexg
StepHypRef Expression
1 uniexg 4485 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V)
2 simpl 109 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝐹𝑉)
32ralimi 2568 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝐹𝑉)
4 dfiun2g 3958 . . . . . 6 (∀𝑥𝐴 𝐹𝑉 𝑥𝐴 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹})
54eleq1d 2273 . . . . 5 (∀𝑥𝐴 𝐹𝑉 → ( 𝑥𝐴 𝐹 ∈ V ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V))
65biimprd 158 . . . 4 (∀𝑥𝐴 𝐹𝑉 → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
73, 6syl 14 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
8 simpr 110 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝑥𝐹)
98ralimi 2568 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝑥𝐹)
10 iunid 3982 . . . . 5 𝑥𝐴 {𝑥} = 𝐴
11 snssi 3776 . . . . . . 7 (𝑥𝐹 → {𝑥} ⊆ 𝐹)
1211ralimi 2568 . . . . . 6 (∀𝑥𝐴 𝑥𝐹 → ∀𝑥𝐴 {𝑥} ⊆ 𝐹)
13 ss2iun 3941 . . . . . 6 (∀𝑥𝐴 {𝑥} ⊆ 𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1412, 13syl 14 . . . . 5 (∀𝑥𝐴 𝑥𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1510, 14eqsstrrid 3239 . . . 4 (∀𝑥𝐴 𝑥𝐹𝐴 𝑥𝐴 𝐹)
16 ssexg 4182 . . . . 5 ((𝐴 𝑥𝐴 𝐹 𝑥𝐴 𝐹 ∈ V) → 𝐴 ∈ V)
1716ex 115 . . . 4 (𝐴 𝑥𝐴 𝐹 → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
189, 15, 173syl 17 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
197, 18syld 45 . 2 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V))
201, 19syl5 32 1 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  wss 3165  {csn 3632   cuni 3849   ciun 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-sn 3638  df-uni 3850  df-iun 3928
This theorem is referenced by:  abnex  4493
  Copyright terms: Public domain W3C validator