ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abnexg GIF version

Theorem abnexg 4367
Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6016. Note that the second antecedent 𝑥𝐴𝑥𝐹 cannot be translated to 𝐴𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4369 and pwnex 4370 respectively, proved from abnex 4368, which is a consequence of abnexg 4367 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.)
Assertion
Ref Expression
abnexg (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem abnexg
StepHypRef Expression
1 uniexg 4361 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V)
2 simpl 108 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝐹𝑉)
32ralimi 2495 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝐹𝑉)
4 dfiun2g 3845 . . . . . 6 (∀𝑥𝐴 𝐹𝑉 𝑥𝐴 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹})
54eleq1d 2208 . . . . 5 (∀𝑥𝐴 𝐹𝑉 → ( 𝑥𝐴 𝐹 ∈ V ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V))
65biimprd 157 . . . 4 (∀𝑥𝐴 𝐹𝑉 → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
73, 6syl 14 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
8 simpr 109 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝑥𝐹)
98ralimi 2495 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝑥𝐹)
10 iunid 3868 . . . . 5 𝑥𝐴 {𝑥} = 𝐴
11 snssi 3664 . . . . . . 7 (𝑥𝐹 → {𝑥} ⊆ 𝐹)
1211ralimi 2495 . . . . . 6 (∀𝑥𝐴 𝑥𝐹 → ∀𝑥𝐴 {𝑥} ⊆ 𝐹)
13 ss2iun 3828 . . . . . 6 (∀𝑥𝐴 {𝑥} ⊆ 𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1412, 13syl 14 . . . . 5 (∀𝑥𝐴 𝑥𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1510, 14eqsstrrid 3144 . . . 4 (∀𝑥𝐴 𝑥𝐹𝐴 𝑥𝐴 𝐹)
16 ssexg 4067 . . . . 5 ((𝐴 𝑥𝐴 𝐹 𝑥𝐴 𝐹 ∈ V) → 𝐴 ∈ V)
1716ex 114 . . . 4 (𝐴 𝑥𝐴 𝐹 → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
189, 15, 173syl 17 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
197, 18syld 45 . 2 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V))
201, 19syl5 32 1 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  Vcvv 2686  wss 3071  {csn 3527   cuni 3736   ciun 3813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-in 3077  df-ss 3084  df-sn 3533  df-uni 3737  df-iun 3815
This theorem is referenced by:  abnex  4368
  Copyright terms: Public domain W3C validator