| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abnexg | GIF version | ||
| Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6175. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4483 and pwnex 4484 respectively, proved from abnex 4482, which is a consequence of abnexg 4481 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| abnexg | ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4474 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V) | |
| 2 | simpl 109 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ 𝑉) | |
| 3 | 2 | ralimi 2560 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉) |
| 4 | dfiun2g 3948 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹}) | |
| 5 | 4 | eleq1d 2265 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ↔ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V)) |
| 6 | 5 | biimprd 158 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
| 7 | 3, 6 | syl 14 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
| 8 | simpr 110 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 9 | 8 | ralimi 2560 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹) |
| 10 | iunid 3972 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 11 | snssi 3766 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → {𝑥} ⊆ 𝐹) | |
| 12 | 11 | ralimi 2560 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹) |
| 13 | ss2iun 3931 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
| 15 | 10, 14 | eqsstrrid 3230 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
| 16 | ssexg 4172 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ∧ ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V) → 𝐴 ∈ V) | |
| 17 | 16 | ex 115 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
| 18 | 9, 15, 17 | 3syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
| 19 | 7, 18 | syld 45 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V)) |
| 20 | 1, 19 | syl5 32 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ⊆ wss 3157 {csn 3622 ∪ cuni 3839 ∪ ciun 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-iun 3918 |
| This theorem is referenced by: abnex 4482 |
| Copyright terms: Public domain | W3C validator |