ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss GIF version

Theorem rdgss 6383
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1 (𝜑𝐹 Fn V)
rdgss.2 (𝜑𝐼𝑉)
rdgss.3 (𝜑𝐴 ∈ On)
rdgss.4 (𝜑𝐵 ∈ On)
rdgss.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
rdgss (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))

Proof of Theorem rdgss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4 (𝜑𝐴𝐵)
2 ssel 3149 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 ssid 3175 . . . . . . 7 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))
4 fveq2 5515 . . . . . . . . . 10 (𝑦 = 𝑥 → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, 𝐼)‘𝑥))
54fveq2d 5519 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))
65sseq2d 3185 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
76rspcev 2841 . . . . . . 7 ((𝑥𝐵 ∧ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
83, 7mpan2 425 . . . . . 6 (𝑥𝐵 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
92, 8syl6 33 . . . . 5 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
109ralrimiv 2549 . . . 4 (𝐴𝐵 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
111, 10syl 14 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
12 iunss2 3931 . . 3 (∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
13 unss2 3306 . . 3 ( 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
1411, 12, 133syl 17 . 2 (𝜑 → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
15 rdgss.1 . . 3 (𝜑𝐹 Fn V)
16 rdgss.2 . . 3 (𝜑𝐼𝑉)
17 rdgss.3 . . 3 (𝜑𝐴 ∈ On)
18 rdgival 6382 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐴 ∈ On) → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
1915, 16, 17, 18syl3anc 1238 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
20 rdgss.4 . . 3 (𝜑𝐵 ∈ On)
21 rdgival 6382 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐵 ∈ On) → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2215, 16, 20, 21syl3anc 1238 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2314, 19, 223sstr4d 3200 1 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  cun 3127  wss 3129   ciun 3886  Oncon0 4363   Fn wfn 5211  cfv 5216  reccrdg 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-recs 6305  df-irdg 6370
This theorem is referenced by:  oawordi  6469
  Copyright terms: Public domain W3C validator