ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss GIF version

Theorem rdgss 6469
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1 (𝜑𝐹 Fn V)
rdgss.2 (𝜑𝐼𝑉)
rdgss.3 (𝜑𝐴 ∈ On)
rdgss.4 (𝜑𝐵 ∈ On)
rdgss.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
rdgss (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))

Proof of Theorem rdgss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4 (𝜑𝐴𝐵)
2 ssel 3187 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 ssid 3213 . . . . . . 7 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))
4 fveq2 5576 . . . . . . . . . 10 (𝑦 = 𝑥 → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, 𝐼)‘𝑥))
54fveq2d 5580 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))
65sseq2d 3223 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
76rspcev 2877 . . . . . . 7 ((𝑥𝐵 ∧ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
83, 7mpan2 425 . . . . . 6 (𝑥𝐵 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
92, 8syl6 33 . . . . 5 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
109ralrimiv 2578 . . . 4 (𝐴𝐵 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
111, 10syl 14 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
12 iunss2 3972 . . 3 (∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
13 unss2 3344 . . 3 ( 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
1411, 12, 133syl 17 . 2 (𝜑 → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
15 rdgss.1 . . 3 (𝜑𝐹 Fn V)
16 rdgss.2 . . 3 (𝜑𝐼𝑉)
17 rdgss.3 . . 3 (𝜑𝐴 ∈ On)
18 rdgival 6468 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐴 ∈ On) → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
1915, 16, 17, 18syl3anc 1250 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
20 rdgss.4 . . 3 (𝜑𝐵 ∈ On)
21 rdgival 6468 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐵 ∈ On) → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2215, 16, 20, 21syl3anc 1250 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2314, 19, 223sstr4d 3238 1 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  wral 2484  wrex 2485  Vcvv 2772  cun 3164  wss 3166   ciun 3927  Oncon0 4410   Fn wfn 5266  cfv 5271  reccrdg 6455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391  df-irdg 6456
This theorem is referenced by:  oawordi  6555
  Copyright terms: Public domain W3C validator