Step | Hyp | Ref
| Expression |
1 | | rdgss.5 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | | ssel 3141 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | | ssid 3167 |
. . . . . . 7
⊢ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) |
4 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, 𝐼)‘𝑥)) |
5 | 4 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) |
6 | 5 | sseq2d 3177 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))) |
7 | 6 | rspcev 2834 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) → ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
8 | 3, 7 | mpan2 423 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
9 | 2, 8 | syl6 33 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))) |
10 | 9 | ralrimiv 2542 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
11 | 1, 10 | syl 14 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
12 | | iunss2 3918 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → ∪
𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ ∪ 𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
13 | | unss2 3298 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ ∪ 𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → (𝐼 ∪ ∪
𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 ∪ ∪
𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))) |
14 | 11, 12, 13 | 3syl 17 |
. 2
⊢ (𝜑 → (𝐼 ∪ ∪
𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 ∪ ∪
𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))) |
15 | | rdgss.1 |
. . 3
⊢ (𝜑 → 𝐹 Fn V) |
16 | | rdgss.2 |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
17 | | rdgss.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
18 | | rdgival 6361 |
. . 3
⊢ ((𝐹 Fn V ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ On) → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 ∪ ∪
𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))) |
19 | 15, 16, 17, 18 | syl3anc 1233 |
. 2
⊢ (𝜑 → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 ∪ ∪
𝑥 ∈ 𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))) |
20 | | rdgss.4 |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
21 | | rdgival 6361 |
. . 3
⊢ ((𝐹 Fn V ∧ 𝐼 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 ∪ ∪
𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))) |
22 | 15, 16, 20, 21 | syl3anc 1233 |
. 2
⊢ (𝜑 → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 ∪ ∪
𝑦 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))) |
23 | 14, 19, 22 | 3sstr4d 3192 |
1
⊢ (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵)) |