ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss GIF version

Theorem rdgss 6487
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1 (𝜑𝐹 Fn V)
rdgss.2 (𝜑𝐼𝑉)
rdgss.3 (𝜑𝐴 ∈ On)
rdgss.4 (𝜑𝐵 ∈ On)
rdgss.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
rdgss (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))

Proof of Theorem rdgss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4 (𝜑𝐴𝐵)
2 ssel 3191 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 ssid 3217 . . . . . . 7 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))
4 fveq2 5594 . . . . . . . . . 10 (𝑦 = 𝑥 → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, 𝐼)‘𝑥))
54fveq2d 5598 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐼)‘𝑥)))
65sseq2d 3227 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
76rspcev 2881 . . . . . . 7 ((𝑥𝐵 ∧ (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
83, 7mpan2 425 . . . . . 6 (𝑥𝐵 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
92, 8syl6 33 . . . . 5 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
109ralrimiv 2579 . . . 4 (𝐴𝐵 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
111, 10syl 14 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
12 iunss2 3981 . . 3 (∀𝑥𝐴𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
13 unss2 3348 . . 3 ( 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥)) ⊆ 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
1411, 12, 133syl 17 . 2 (𝜑 → (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))) ⊆ (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
15 rdgss.1 . . 3 (𝜑𝐹 Fn V)
16 rdgss.2 . . 3 (𝜑𝐼𝑉)
17 rdgss.3 . . 3 (𝜑𝐴 ∈ On)
18 rdgival 6486 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐴 ∈ On) → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
1915, 16, 17, 18syl3anc 1250 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) = (𝐼 𝑥𝐴 (𝐹‘(rec(𝐹, 𝐼)‘𝑥))))
20 rdgss.4 . . 3 (𝜑𝐵 ∈ On)
21 rdgival 6486 . . 3 ((𝐹 Fn V ∧ 𝐼𝑉𝐵 ∈ On) → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2215, 16, 20, 21syl3anc 1250 . 2 (𝜑 → (rec(𝐹, 𝐼)‘𝐵) = (𝐼 𝑦𝐵 (𝐹‘(rec(𝐹, 𝐼)‘𝑦))))
2314, 19, 223sstr4d 3242 1 (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  cun 3168  wss 3170   ciun 3936  Oncon0 4423   Fn wfn 5280  cfv 5285  reccrdg 6473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-recs 6409  df-irdg 6474
This theorem is referenced by:  oawordi  6573
  Copyright terms: Public domain W3C validator