Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iprc | GIF version |
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.) |
Ref | Expression |
---|---|
iprc | ⊢ ¬ I ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4130 | . . 3 ⊢ ¬ V ∈ V | |
2 | dmi 4835 | . . . 4 ⊢ dom I = V | |
3 | 2 | eleq1i 2241 | . . 3 ⊢ (dom I ∈ V ↔ V ∈ V) |
4 | 1, 3 | mtbir 671 | . 2 ⊢ ¬ dom I ∈ V |
5 | dmexg 4884 | . 2 ⊢ ( I ∈ V → dom I ∈ V) | |
6 | 4, 5 | mto 662 | 1 ⊢ ¬ I ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2146 Vcvv 2735 I cid 4282 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |