ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iprc GIF version

Theorem iprc 4961
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 vprc 4187 . . 3 ¬ V ∈ V
2 dmi 4907 . . . 4 dom I = V
32eleq1i 2272 . . 3 (dom I ∈ V ↔ V ∈ V)
41, 3mtbir 673 . 2 ¬ dom I ∈ V
5 dmexg 4956 . 2 ( I ∈ V → dom I ∈ V)
64, 5mto 664 1 ¬ I ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  Vcvv 2773   I cid 4348  dom cdm 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator