ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov2gf GIF version

Theorem ov2gf 5977
Description: The value of an operation class abstraction. A version of ovmpog 5987 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a 𝑥𝐴
ov2gf.c 𝑦𝐴
ov2gf.d 𝑦𝐵
ov2gf.1 𝑥𝐺
ov2gf.2 𝑦𝑆
ov2gf.3 (𝑥 = 𝐴𝑅 = 𝐺)
ov2gf.4 (𝑦 = 𝐵𝐺 = 𝑆)
ov2gf.5 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ov2gf ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2741 . . 3 (𝑆𝐻𝑆 ∈ V)
2 ov2gf.a . . . 4 𝑥𝐴
3 ov2gf.c . . . 4 𝑦𝐴
4 ov2gf.d . . . 4 𝑦𝐵
5 ov2gf.1 . . . . . 6 𝑥𝐺
65nfel1 2323 . . . . 5 𝑥 𝐺 ∈ V
7 ov2gf.5 . . . . . . . 8 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 5920 . . . . . . . 8 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2309 . . . . . . 7 𝑥𝐹
10 nfcv 2312 . . . . . . 7 𝑥𝑦
112, 9, 10nfov 5883 . . . . . 6 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2320 . . . . 5 𝑥(𝐴𝐹𝑦) = 𝐺
136, 12nfim 1565 . . . 4 𝑥(𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)
14 ov2gf.2 . . . . . 6 𝑦𝑆
1514nfel1 2323 . . . . 5 𝑦 𝑆 ∈ V
16 nfmpo2 5921 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2309 . . . . . . 7 𝑦𝐹
183, 17, 4nfov 5883 . . . . . 6 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2320 . . . . 5 𝑦(𝐴𝐹𝐵) = 𝑆
2015, 19nfim 1565 . . . 4 𝑦(𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)
21 ov2gf.3 . . . . . 6 (𝑥 = 𝐴𝑅 = 𝐺)
2221eleq1d 2239 . . . . 5 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐺 ∈ V))
23 oveq1 5860 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2185 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐺))
2522, 24imbi12d 233 . . . 4 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)))
26 ov2gf.4 . . . . . 6 (𝑦 = 𝐵𝐺 = 𝑆)
2726eleq1d 2239 . . . . 5 (𝑦 = 𝐵 → (𝐺 ∈ V ↔ 𝑆 ∈ V))
28 oveq2 5861 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2185 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐺 ↔ (𝐴𝐹𝐵) = 𝑆))
3027, 29imbi12d 233 . . . 4 (𝑦 = 𝐵 → ((𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺) ↔ (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)))
317ovmpt4g 5975 . . . . 5 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1200 . . . 4 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2797 . . 3 ((𝐴𝐶𝐵𝐷) → (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆))
341, 33syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝑆𝐻 → (𝐴𝐹𝐵) = 𝑆))
35343impia 1195 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wnfc 2299  Vcvv 2730  (class class class)co 5853  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator