ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov2gf GIF version

Theorem ov2gf 5998
Description: The value of an operation class abstraction. A version of ovmpog 6008 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a 𝑥𝐴
ov2gf.c 𝑦𝐴
ov2gf.d 𝑦𝐵
ov2gf.1 𝑥𝐺
ov2gf.2 𝑦𝑆
ov2gf.3 (𝑥 = 𝐴𝑅 = 𝐺)
ov2gf.4 (𝑦 = 𝐵𝐺 = 𝑆)
ov2gf.5 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ov2gf ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2748 . . 3 (𝑆𝐻𝑆 ∈ V)
2 ov2gf.a . . . 4 𝑥𝐴
3 ov2gf.c . . . 4 𝑦𝐴
4 ov2gf.d . . . 4 𝑦𝐵
5 ov2gf.1 . . . . . 6 𝑥𝐺
65nfel1 2330 . . . . 5 𝑥 𝐺 ∈ V
7 ov2gf.5 . . . . . . . 8 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 5941 . . . . . . . 8 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2316 . . . . . . 7 𝑥𝐹
10 nfcv 2319 . . . . . . 7 𝑥𝑦
112, 9, 10nfov 5904 . . . . . 6 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2327 . . . . 5 𝑥(𝐴𝐹𝑦) = 𝐺
136, 12nfim 1572 . . . 4 𝑥(𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)
14 ov2gf.2 . . . . . 6 𝑦𝑆
1514nfel1 2330 . . . . 5 𝑦 𝑆 ∈ V
16 nfmpo2 5942 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2316 . . . . . . 7 𝑦𝐹
183, 17, 4nfov 5904 . . . . . 6 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2327 . . . . 5 𝑦(𝐴𝐹𝐵) = 𝑆
2015, 19nfim 1572 . . . 4 𝑦(𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)
21 ov2gf.3 . . . . . 6 (𝑥 = 𝐴𝑅 = 𝐺)
2221eleq1d 2246 . . . . 5 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐺 ∈ V))
23 oveq1 5881 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2192 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐺))
2522, 24imbi12d 234 . . . 4 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)))
26 ov2gf.4 . . . . . 6 (𝑦 = 𝐵𝐺 = 𝑆)
2726eleq1d 2246 . . . . 5 (𝑦 = 𝐵 → (𝐺 ∈ V ↔ 𝑆 ∈ V))
28 oveq2 5882 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2192 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐺 ↔ (𝐴𝐹𝐵) = 𝑆))
3027, 29imbi12d 234 . . . 4 (𝑦 = 𝐵 → ((𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺) ↔ (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)))
317ovmpt4g 5996 . . . . 5 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1205 . . . 4 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2804 . . 3 ((𝐴𝐶𝐵𝐷) → (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆))
341, 33syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝑆𝐻 → (𝐴𝐹𝐵) = 𝑆))
35343impia 1200 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wnfc 2306  Vcvv 2737  (class class class)co 5874  cmpo 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator