ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov2gf GIF version

Theorem ov2gf 6047
Description: The value of an operation class abstraction. A version of ovmpog 6057 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a 𝑥𝐴
ov2gf.c 𝑦𝐴
ov2gf.d 𝑦𝐵
ov2gf.1 𝑥𝐺
ov2gf.2 𝑦𝑆
ov2gf.3 (𝑥 = 𝐴𝑅 = 𝐺)
ov2gf.4 (𝑦 = 𝐵𝐺 = 𝑆)
ov2gf.5 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ov2gf ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2774 . . 3 (𝑆𝐻𝑆 ∈ V)
2 ov2gf.a . . . 4 𝑥𝐴
3 ov2gf.c . . . 4 𝑦𝐴
4 ov2gf.d . . . 4 𝑦𝐵
5 ov2gf.1 . . . . . 6 𝑥𝐺
65nfel1 2350 . . . . 5 𝑥 𝐺 ∈ V
7 ov2gf.5 . . . . . . . 8 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 5989 . . . . . . . 8 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2336 . . . . . . 7 𝑥𝐹
10 nfcv 2339 . . . . . . 7 𝑥𝑦
112, 9, 10nfov 5952 . . . . . 6 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2347 . . . . 5 𝑥(𝐴𝐹𝑦) = 𝐺
136, 12nfim 1586 . . . 4 𝑥(𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)
14 ov2gf.2 . . . . . 6 𝑦𝑆
1514nfel1 2350 . . . . 5 𝑦 𝑆 ∈ V
16 nfmpo2 5990 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2336 . . . . . . 7 𝑦𝐹
183, 17, 4nfov 5952 . . . . . 6 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2347 . . . . 5 𝑦(𝐴𝐹𝐵) = 𝑆
2015, 19nfim 1586 . . . 4 𝑦(𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)
21 ov2gf.3 . . . . . 6 (𝑥 = 𝐴𝑅 = 𝐺)
2221eleq1d 2265 . . . . 5 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐺 ∈ V))
23 oveq1 5929 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2211 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐺))
2522, 24imbi12d 234 . . . 4 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺)))
26 ov2gf.4 . . . . . 6 (𝑦 = 𝐵𝐺 = 𝑆)
2726eleq1d 2265 . . . . 5 (𝑦 = 𝐵 → (𝐺 ∈ V ↔ 𝑆 ∈ V))
28 oveq2 5930 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2211 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐺 ↔ (𝐴𝐹𝐵) = 𝑆))
3027, 29imbi12d 234 . . . 4 (𝑦 = 𝐵 → ((𝐺 ∈ V → (𝐴𝐹𝑦) = 𝐺) ↔ (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆)))
317ovmpt4g 6045 . . . . 5 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1207 . . . 4 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2831 . . 3 ((𝐴𝐶𝐵𝐷) → (𝑆 ∈ V → (𝐴𝐹𝐵) = 𝑆))
341, 33syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝑆𝐻 → (𝐴𝐹𝐵) = 𝑆))
35343impia 1202 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wnfc 2326  Vcvv 2763  (class class class)co 5922  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator