ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsncnv GIF version

Theorem mapsncnv 6661
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsncnv 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑦,𝑋
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑋(𝑥)

Proof of Theorem mapsncnv
StepHypRef Expression
1 elmapi 6636 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑚 {𝑋}) → 𝑥:{𝑋}⟶𝐵)
2 mapsncnv.x . . . . . . . . . 10 𝑋 ∈ V
32snid 3607 . . . . . . . . 9 𝑋 ∈ {𝑋}
4 ffvelrn 5618 . . . . . . . . 9 ((𝑥:{𝑋}⟶𝐵𝑋 ∈ {𝑋}) → (𝑥𝑋) ∈ 𝐵)
51, 3, 4sylancl 410 . . . . . . . 8 (𝑥 ∈ (𝐵𝑚 {𝑋}) → (𝑥𝑋) ∈ 𝐵)
6 eqid 2165 . . . . . . . . 9 {𝑋} = {𝑋}
7 mapsncnv.b . . . . . . . . 9 𝐵 ∈ V
86, 7, 2mapsnconst 6660 . . . . . . . 8 (𝑥 ∈ (𝐵𝑚 {𝑋}) → 𝑥 = ({𝑋} × {(𝑥𝑋)}))
95, 8jca 304 . . . . . . 7 (𝑥 ∈ (𝐵𝑚 {𝑋}) → ((𝑥𝑋) ∈ 𝐵𝑥 = ({𝑋} × {(𝑥𝑋)})))
10 eleq1 2229 . . . . . . . 8 (𝑦 = (𝑥𝑋) → (𝑦𝐵 ↔ (𝑥𝑋) ∈ 𝐵))
11 sneq 3587 . . . . . . . . . 10 (𝑦 = (𝑥𝑋) → {𝑦} = {(𝑥𝑋)})
1211xpeq2d 4628 . . . . . . . . 9 (𝑦 = (𝑥𝑋) → ({𝑋} × {𝑦}) = ({𝑋} × {(𝑥𝑋)}))
1312eqeq2d 2177 . . . . . . . 8 (𝑦 = (𝑥𝑋) → (𝑥 = ({𝑋} × {𝑦}) ↔ 𝑥 = ({𝑋} × {(𝑥𝑋)})))
1410, 13anbi12d 465 . . . . . . 7 (𝑦 = (𝑥𝑋) → ((𝑦𝐵𝑥 = ({𝑋} × {𝑦})) ↔ ((𝑥𝑋) ∈ 𝐵𝑥 = ({𝑋} × {(𝑥𝑋)}))))
159, 14syl5ibrcom 156 . . . . . 6 (𝑥 ∈ (𝐵𝑚 {𝑋}) → (𝑦 = (𝑥𝑋) → (𝑦𝐵𝑥 = ({𝑋} × {𝑦}))))
1615imp 123 . . . . 5 ((𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋)) → (𝑦𝐵𝑥 = ({𝑋} × {𝑦})))
17 fconst6g 5386 . . . . . . . . 9 (𝑦𝐵 → ({𝑋} × {𝑦}):{𝑋}⟶𝐵)
182snex 4164 . . . . . . . . . 10 {𝑋} ∈ V
197, 18elmap 6643 . . . . . . . . 9 (({𝑋} × {𝑦}) ∈ (𝐵𝑚 {𝑋}) ↔ ({𝑋} × {𝑦}):{𝑋}⟶𝐵)
2017, 19sylibr 133 . . . . . . . 8 (𝑦𝐵 → ({𝑋} × {𝑦}) ∈ (𝐵𝑚 {𝑋}))
21 vex 2729 . . . . . . . . . . 11 𝑦 ∈ V
2221fvconst2 5701 . . . . . . . . . 10 (𝑋 ∈ {𝑋} → (({𝑋} × {𝑦})‘𝑋) = 𝑦)
233, 22mp1i 10 . . . . . . . . 9 (𝑦𝐵 → (({𝑋} × {𝑦})‘𝑋) = 𝑦)
2423eqcomd 2171 . . . . . . . 8 (𝑦𝐵𝑦 = (({𝑋} × {𝑦})‘𝑋))
2520, 24jca 304 . . . . . . 7 (𝑦𝐵 → (({𝑋} × {𝑦}) ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (({𝑋} × {𝑦})‘𝑋)))
26 eleq1 2229 . . . . . . . 8 (𝑥 = ({𝑋} × {𝑦}) → (𝑥 ∈ (𝐵𝑚 {𝑋}) ↔ ({𝑋} × {𝑦}) ∈ (𝐵𝑚 {𝑋})))
27 fveq1 5485 . . . . . . . . 9 (𝑥 = ({𝑋} × {𝑦}) → (𝑥𝑋) = (({𝑋} × {𝑦})‘𝑋))
2827eqeq2d 2177 . . . . . . . 8 (𝑥 = ({𝑋} × {𝑦}) → (𝑦 = (𝑥𝑋) ↔ 𝑦 = (({𝑋} × {𝑦})‘𝑋)))
2926, 28anbi12d 465 . . . . . . 7 (𝑥 = ({𝑋} × {𝑦}) → ((𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋)) ↔ (({𝑋} × {𝑦}) ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (({𝑋} × {𝑦})‘𝑋))))
3025, 29syl5ibrcom 156 . . . . . 6 (𝑦𝐵 → (𝑥 = ({𝑋} × {𝑦}) → (𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋))))
3130imp 123 . . . . 5 ((𝑦𝐵𝑥 = ({𝑋} × {𝑦})) → (𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋)))
3216, 31impbii 125 . . . 4 ((𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋)) ↔ (𝑦𝐵𝑥 = ({𝑋} × {𝑦})))
33 mapsncnv.s . . . . . . 7 𝑆 = {𝑋}
3433oveq2i 5853 . . . . . 6 (𝐵𝑚 𝑆) = (𝐵𝑚 {𝑋})
3534eleq2i 2233 . . . . 5 (𝑥 ∈ (𝐵𝑚 𝑆) ↔ 𝑥 ∈ (𝐵𝑚 {𝑋}))
3635anbi1i 454 . . . 4 ((𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋)) ↔ (𝑥 ∈ (𝐵𝑚 {𝑋}) ∧ 𝑦 = (𝑥𝑋)))
3733xpeq1i 4624 . . . . . 6 (𝑆 × {𝑦}) = ({𝑋} × {𝑦})
3837eqeq2i 2176 . . . . 5 (𝑥 = (𝑆 × {𝑦}) ↔ 𝑥 = ({𝑋} × {𝑦}))
3938anbi2i 453 . . . 4 ((𝑦𝐵𝑥 = (𝑆 × {𝑦})) ↔ (𝑦𝐵𝑥 = ({𝑋} × {𝑦})))
4032, 36, 393bitr4i 211 . . 3 ((𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋)) ↔ (𝑦𝐵𝑥 = (𝑆 × {𝑦})))
4140opabbii 4049 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = (𝑆 × {𝑦}))}
42 mapsncnv.f . . . . 5 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
43 df-mpt 4045 . . . . 5 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))}
4442, 43eqtri 2186 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))}
4544cnveqi 4779 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))}
46 cnvopab 5005 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))} = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))}
4745, 46eqtri 2186 . 2 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ (𝐵𝑚 𝑆) ∧ 𝑦 = (𝑥𝑋))}
48 df-mpt 4045 . 2 (𝑦𝐵 ↦ (𝑆 × {𝑦})) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = (𝑆 × {𝑦}))}
4941, 47, 483eqtr4i 2196 1 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  {copab 4042  cmpt 4043   × cxp 4602  ccnv 4603  wf 5184  cfv 5188  (class class class)co 5842  𝑚 cmap 6614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616
This theorem is referenced by:  mapsnf1o2  6662  mapsnf1o3  6663
  Copyright terms: Public domain W3C validator