ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsneng GIF version

Theorem xpsneng 6819
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
xpsneng ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)

Proof of Theorem xpsneng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4639 . . 3 (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦}))
2 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2breq12d 4015 . 2 (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴))
4 sneq 3603 . . . 4 (𝑦 = 𝐵 → {𝑦} = {𝐵})
54xpeq2d 4649 . . 3 (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵}))
65breq1d 4012 . 2 (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴))
7 vex 2740 . . 3 𝑥 ∈ V
8 vex 2740 . . 3 𝑦 ∈ V
97, 8xpsnen 6818 . 2 (𝑥 × {𝑦}) ≈ 𝑥
103, 6, 9vtocl2g 2801 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {csn 3592   class class class wbr 4002   × cxp 4623  cen 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-en 6738
This theorem is referenced by:  xp1en  6820  xpsnen2g  6826  xpdom3m  6831  hashxp  10799  pwf1oexmid  14609
  Copyright terms: Public domain W3C validator