![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsneng | GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4674 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
2 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | breq12d 4043 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
4 | sneq 3630 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
5 | 4 | xpeq2d 4684 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
6 | 5 | breq1d 4040 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
7 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 2763 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpsnen 6877 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
10 | 3, 6, 9 | vtocl2g 2825 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3619 class class class wbr 4030 × cxp 4658 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-en 6797 |
This theorem is referenced by: xp1en 6879 xpsnen2g 6885 xpdom3m 6890 hashxp 10900 pwf1oexmid 15560 |
Copyright terms: Public domain | W3C validator |