Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpsneng | GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4593 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
2 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | breq12d 3974 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
4 | sneq 3567 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
5 | 4 | xpeq2d 4603 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
6 | 5 | breq1d 3971 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
7 | vex 2712 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 2712 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpsnen 6755 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
10 | 3, 6, 9 | vtocl2g 2773 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 {csn 3556 class class class wbr 3961 × cxp 4577 ≈ cen 6672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-en 6675 |
This theorem is referenced by: xp1en 6757 xpsnen2g 6763 xpdom3m 6768 hashxp 10677 pwf1oexmid 13510 |
Copyright terms: Public domain | W3C validator |