| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsneng | GIF version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
| Ref | Expression |
|---|---|
| xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4730 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
| 2 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | 1, 2 | breq12d 4095 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
| 4 | sneq 3677 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
| 5 | 4 | xpeq2d 4740 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
| 6 | 5 | breq1d 4092 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
| 7 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | xpsnen 6968 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
| 10 | 3, 6, 9 | vtocl2g 2865 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 class class class wbr 4082 × cxp 4714 ≈ cen 6875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-en 6878 |
| This theorem is referenced by: xp1en 6970 xpsnen2g 6976 xpdom3m 6981 hashxp 11035 pwf1oexmid 16296 |
| Copyright terms: Public domain | W3C validator |