Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsneng GIF version

Theorem xpsneng 6756
 Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
xpsneng ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)

Proof of Theorem xpsneng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4593 . . 3 (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦}))
2 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2breq12d 3974 . 2 (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴))
4 sneq 3567 . . . 4 (𝑦 = 𝐵 → {𝑦} = {𝐵})
54xpeq2d 4603 . . 3 (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵}))
65breq1d 3971 . 2 (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴))
7 vex 2712 . . 3 𝑥 ∈ V
8 vex 2712 . . 3 𝑦 ∈ V
97, 8xpsnen 6755 . 2 (𝑥 × {𝑦}) ≈ 𝑥
103, 6, 9vtocl2g 2773 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 2125  {csn 3556   class class class wbr 3961   × cxp 4577   ≈ cen 6672 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-en 6675 This theorem is referenced by:  xp1en  6757  xpsnen2g  6763  xpdom3m  6768  hashxp  10677  pwf1oexmid  13510
 Copyright terms: Public domain W3C validator