Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvdiagfn | GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fvdiagfn | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | snexg 4170 | . . 3 ⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ V) | |
3 | xpexg 4725 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V) | |
4 | 2, 3 | sylan2 284 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐼 × {𝑋}) ∈ V) |
5 | sneq 3594 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
6 | 5 | xpeq2d 4635 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋})) |
7 | fdiagfn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
8 | 6, 7 | fvmptg 5572 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐼 × {𝑋}) ∈ V) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
9 | 1, 4, 8 | syl2anc 409 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 ↦ cmpt 4050 × cxp 4609 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |