| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvdiagfn | GIF version | ||
| Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
| Ref | Expression |
|---|---|
| fvdiagfn | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 2 | snexg 4218 | . . 3 ⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ V) | |
| 3 | xpexg 4778 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V) | |
| 4 | 2, 3 | sylan2 286 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐼 × {𝑋}) ∈ V) |
| 5 | sneq 3634 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 6 | 5 | xpeq2d 4688 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋})) |
| 7 | fdiagfn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
| 8 | 6, 7 | fvmptg 5640 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐼 × {𝑋}) ∈ V) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
| 9 | 1, 4, 8 | syl2anc 411 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 ↦ cmpt 4095 × cxp 4662 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |