ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvdiagfn GIF version

Theorem fvdiagfn 6659
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fvdiagfn ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑊   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 109 . 2 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
2 snexg 4163 . . 3 (𝑋𝐵 → {𝑋} ∈ V)
3 xpexg 4718 . . 3 ((𝐼𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V)
42, 3sylan2 284 . 2 ((𝐼𝑊𝑋𝐵) → (𝐼 × {𝑋}) ∈ V)
5 sneq 3587 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
65xpeq2d 4628 . . 3 (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋}))
7 fdiagfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
86, 7fvmptg 5562 . 2 ((𝑋𝐵 ∧ (𝐼 × {𝑋}) ∈ V) → (𝐹𝑋) = (𝐼 × {𝑋}))
91, 4, 8syl2anc 409 1 ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cmpt 4043   × cxp 4602  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator