ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvdiagfn GIF version

Theorem fvdiagfn 6752
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fvdiagfn ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑊   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 110 . 2 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
2 snexg 4217 . . 3 (𝑋𝐵 → {𝑋} ∈ V)
3 xpexg 4777 . . 3 ((𝐼𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V)
42, 3sylan2 286 . 2 ((𝐼𝑊𝑋𝐵) → (𝐼 × {𝑋}) ∈ V)
5 sneq 3633 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
65xpeq2d 4687 . . 3 (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋}))
7 fdiagfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
86, 7fvmptg 5637 . 2 ((𝑋𝐵 ∧ (𝐼 × {𝑋}) ∈ V) → (𝐹𝑋) = (𝐼 × {𝑋}))
91, 4, 8syl2anc 411 1 ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622  cmpt 4094   × cxp 4661  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator