ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstg GIF version

Theorem fconstg 5366
Description: A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})

Proof of Theorem fconstg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3571 . . . 4 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21xpeq2d 4610 . . 3 (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵}))
3 feq1 5302 . . . 4 ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥}))
4 feq3 5304 . . . 4 ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
53, 4sylan9bb 458 . . 3 (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
62, 1, 5syl2anc 409 . 2 (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
7 vex 2715 . . 3 𝑥 ∈ V
87fconst 5365 . 2 (𝐴 × {𝑥}):𝐴⟶{𝑥}
96, 8vtoclg 2772 1 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wcel 2128  {csn 3560   × cxp 4584  wf 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-fun 5172  df-fn 5173  df-f 5174
This theorem is referenced by:  fnconstg  5367  fconst6g  5368  xpsng  5642  fvconst2g  5681  fconst2g  5682  dvef  13088
  Copyright terms: Public domain W3C validator