![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fconstg | GIF version |
Description: A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
fconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3630 | . . . 4 ⊢ (𝑥 = 𝐵 → {𝑥} = {𝐵}) | |
2 | 1 | xpeq2d 4684 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵})) |
3 | feq1 5387 | . . . 4 ⊢ ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥})) | |
4 | feq3 5389 | . . . 4 ⊢ ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
5 | 3, 4 | sylan9bb 462 | . . 3 ⊢ (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
6 | 2, 1, 5 | syl2anc 411 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
7 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
8 | 7 | fconst 5450 | . 2 ⊢ (𝐴 × {𝑥}):𝐴⟶{𝑥} |
9 | 6, 8 | vtoclg 2821 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {csn 3619 × cxp 4658 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-fun 5257 df-fn 5258 df-f 5259 |
This theorem is referenced by: fnconstg 5452 fconst6g 5453 xpsng 5734 fvconst2g 5773 fconst2g 5774 dvef 14906 |
Copyright terms: Public domain | W3C validator |