Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstg | GIF version |
Description: A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
fconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . 4 ⊢ (𝑥 = 𝐵 → {𝑥} = {𝐵}) | |
2 | 1 | xpeq2d 4628 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵})) |
3 | feq1 5320 | . . . 4 ⊢ ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥})) | |
4 | feq3 5322 | . . . 4 ⊢ ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
5 | 3, 4 | sylan9bb 458 | . . 3 ⊢ (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
6 | 2, 1, 5 | syl2anc 409 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
7 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
8 | 7 | fconst 5383 | . 2 ⊢ (𝐴 × {𝑥}):𝐴⟶{𝑥} |
9 | 6, 8 | vtoclg 2786 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {csn 3576 × cxp 4602 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: fnconstg 5385 fconst6g 5386 xpsng 5660 fvconst2g 5699 fconst2g 5700 dvef 13328 |
Copyright terms: Public domain | W3C validator |