ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom3m GIF version

Theorem xpdom3m 6954
Description: A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
Assertion
Ref Expression
xpdom3m ((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem xpdom3m
StepHypRef Expression
1 xpsneng 6942 . . . . . . 7 ((𝐴𝑉𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
213adant2 1019 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
32ensymd 6898 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴 × {𝑥}))
4 xpexg 4807 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
543adant3 1020 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × 𝐵) ∈ V)
6 simp3 1002 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
76snssd 3789 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
8 xpss2 4804 . . . . . . 7 ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
97, 8syl 14 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
10 ssdomg 6893 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)))
115, 9, 10sylc 62 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))
12 endomtr 6905 . . . . 5 ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵))
133, 11, 12syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
14133expia 1208 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
1514exlimdv 1843 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
16153impia 1203 1 ((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wex 1516  wcel 2178  Vcvv 2776  wss 3174  {csn 3643   class class class wbr 4059   × cxp 4691  cen 6848  cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-er 6643  df-en 6851  df-dom 6852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator