ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom3m GIF version

Theorem xpdom3m 6928
Description: A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
Assertion
Ref Expression
xpdom3m ((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem xpdom3m
StepHypRef Expression
1 xpsneng 6916 . . . . . . 7 ((𝐴𝑉𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
213adant2 1018 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
32ensymd 6874 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴 × {𝑥}))
4 xpexg 4788 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
543adant3 1019 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × 𝐵) ∈ V)
6 simp3 1001 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
76snssd 3777 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
8 xpss2 4785 . . . . . . 7 ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
97, 8syl 14 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
10 ssdomg 6869 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)))
115, 9, 10sylc 62 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))
12 endomtr 6881 . . . . 5 ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵))
133, 11, 12syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
14133expia 1207 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
1514exlimdv 1841 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
16153impia 1202 1 ((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wex 1514  wcel 2175  Vcvv 2771  wss 3165  {csn 3632   class class class wbr 4043   × cxp 4672  cen 6824  cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-er 6619  df-en 6827  df-dom 6828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator