ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axresscn GIF version

Theorem axresscn 7782
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7826. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
Assertion
Ref Expression
axresscn ℝ ⊆ ℂ

Proof of Theorem axresscn
StepHypRef Expression
1 0r 7672 . . 3 0RR
2 snssi 3702 . . 3 (0RR → {0R} ⊆ R)
3 xpss2 4699 . . 3 ({0R} ⊆ R → (R × {0R}) ⊆ (R × R))
41, 2, 3mp2b 8 . 2 (R × {0R}) ⊆ (R × R)
5 df-r 7744 . 2 ℝ = (R × {0R})
6 df-c 7740 . 2 ℂ = (R × R)
74, 5, 63sstr4i 3169 1 ℝ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2128  wss 3102  {csn 3561   × cxp 4586  Rcnr 7219  0Rc0r 7220  cc 7732  cr 7733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-eprel 4251  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6482  df-ec 6484  df-qs 6488  df-ni 7226  df-pli 7227  df-mi 7228  df-lti 7229  df-plpq 7266  df-mpq 7267  df-enq 7269  df-nqqs 7270  df-plqqs 7271  df-mqqs 7272  df-1nqqs 7273  df-rq 7274  df-ltnqqs 7275  df-inp 7388  df-i1p 7389  df-enr 7648  df-nr 7649  df-0r 7653  df-c 7740  df-r 7744
This theorem is referenced by:  ax1cn  7783  rereceu  7811  recriota  7812  peano5nnnn  7814
  Copyright terms: Public domain W3C validator