| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssxp2 | GIF version | ||
| Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| ssxp2 | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxpm 5117 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ran (𝐶 × 𝐴) = 𝐴) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) = 𝐴) |
| 3 | rnss 4913 | . . . . . 6 ⊢ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵)) | |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵)) |
| 5 | 2, 4 | eqsstrrd 3231 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴 ⊆ ran (𝐶 × 𝐵)) |
| 6 | rnxpss 5119 | . . . 4 ⊢ ran (𝐶 × 𝐵) ⊆ 𝐵 | |
| 7 | 5, 6 | sstrdi 3206 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴 ⊆ 𝐵) |
| 8 | 7 | ex 115 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → 𝐴 ⊆ 𝐵)) |
| 9 | xpss2 4790 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 10 | 8, 9 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3167 × cxp 4677 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 |
| This theorem is referenced by: xpcanm 5127 |
| Copyright terms: Public domain | W3C validator |