MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Structured version   Visualization version   GIF version

Theorem iinrab2 4978
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 4921 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥 ∈ ∅ {𝑦𝐵𝜑})
2 0iin 4972 . . . . . 6 𝑥 ∈ ∅ {𝑦𝐵𝜑} = V
31, 2eqtrdi 2794 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = V)
43ineq1d 4126 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = (V ∩ 𝐵))
5 incom 4115 . . . . 5 (V ∩ 𝐵) = (𝐵 ∩ V)
6 inv1 4309 . . . . 5 (𝐵 ∩ V) = 𝐵
75, 6eqtri 2765 . . . 4 (V ∩ 𝐵) = 𝐵
84, 7eqtrdi 2794 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = 𝐵)
9 rzal 4420 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝜑)
10 rabid2 3293 . . . . 5 (𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
11 ralcom 3267 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑)
1210, 11bitr2i 279 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
139, 12sylib 221 . . 3 (𝐴 = ∅ → 𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
148, 13eqtrd 2777 . 2 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
15 iinrab 4977 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
1615ineq1d 4126 . . 3 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
17 ssrab2 3993 . . . 4 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵
18 dfss 3884 . . . 4 ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵 ↔ {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
1917, 18mpbi 233 . . 3 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵)
2016, 19eqtr4di 2796 . 2 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
2114, 20pm2.61ine 3025 1 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wne 2940  wral 3061  {crab 3065  Vcvv 3408  cin 3865  wss 3866  c0 4237   ciin 4905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238  df-iin 4907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator