Proof of Theorem iinrab2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iineq1 5008 | . . . . . 6
⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∩
𝑥 ∈ ∅ {𝑦 ∈ 𝐵 ∣ 𝜑}) | 
| 2 |  | 0iin 5063 | . . . . . 6
⊢ ∩ 𝑥 ∈ ∅ {𝑦 ∈ 𝐵 ∣ 𝜑} = V | 
| 3 | 1, 2 | eqtrdi 2792 | . . . . 5
⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = V) | 
| 4 | 3 | ineq1d 4218 | . . . 4
⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = (V ∩ 𝐵)) | 
| 5 |  | incom 4208 | . . . . 5
⊢ (V ∩
𝐵) = (𝐵 ∩ V) | 
| 6 |  | inv1 4397 | . . . . 5
⊢ (𝐵 ∩ V) = 𝐵 | 
| 7 | 5, 6 | eqtri 2764 | . . . 4
⊢ (V ∩
𝐵) = 𝐵 | 
| 8 | 4, 7 | eqtrdi 2792 | . . 3
⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = 𝐵) | 
| 9 |  | rzal 4508 | . . . 4
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| 10 |  | rabid2 3469 | . . . . 5
⊢ (𝐵 = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | 
| 11 |  | ralcom 3288 | . . . . 5
⊢
(∀𝑦 ∈
𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| 12 | 10, 11 | bitr2i 276 | . . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ 𝐵 = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | 
| 13 | 9, 12 | sylib 218 | . . 3
⊢ (𝐴 = ∅ → 𝐵 = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | 
| 14 | 8, 13 | eqtrd 2776 | . 2
⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | 
| 15 |  | iinrab 5068 | . . . 4
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | 
| 16 | 15 | ineq1d 4218 | . . 3
⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = ({𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ∩ 𝐵)) | 
| 17 |  | ssrab2 4079 | . . . 4
⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ⊆ 𝐵 | 
| 18 |  | dfss 3969 | . . . 4
⊢ ({𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ⊆ 𝐵 ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} = ({𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ∩ 𝐵)) | 
| 19 | 17, 18 | mpbi 230 | . . 3
⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} = ({𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} ∩ 𝐵) | 
| 20 | 16, 19 | eqtr4di 2794 | . 2
⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | 
| 21 | 14, 20 | pm2.61ine 3024 | 1
⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} |