MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Structured version   Visualization version   GIF version

Theorem iinrab2 5070
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 5010 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥 ∈ ∅ {𝑦𝐵𝜑})
2 0iin 5064 . . . . . 6 𝑥 ∈ ∅ {𝑦𝐵𝜑} = V
31, 2eqtrdi 2782 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = V)
43ineq1d 4209 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = (V ∩ 𝐵))
5 incom 4199 . . . . 5 (V ∩ 𝐵) = (𝐵 ∩ V)
6 inv1 4392 . . . . 5 (𝐵 ∩ V) = 𝐵
75, 6eqtri 2754 . . . 4 (V ∩ 𝐵) = 𝐵
84, 7eqtrdi 2782 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = 𝐵)
9 rzal 4503 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝜑)
10 rabid2 3453 . . . . 5 (𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
11 ralcom 3277 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑)
1210, 11bitr2i 275 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
139, 12sylib 217 . . 3 (𝐴 = ∅ → 𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
148, 13eqtrd 2766 . 2 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
15 iinrab 5069 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
1615ineq1d 4209 . . 3 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
17 ssrab2 4073 . . . 4 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵
18 dfss 3965 . . . 4 ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵 ↔ {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
1917, 18mpbi 229 . . 3 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵)
2016, 19eqtr4di 2784 . 2 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
2114, 20pm2.61ine 3015 1 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wne 2930  wral 3051  {crab 3419  Vcvv 3462  cin 3945  wss 3946  c0 4322   ciin 4994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-in 3953  df-ss 3963  df-nul 4323  df-iin 4996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator