MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpriindi Structured version   Visualization version   GIF version

Theorem xpriindi 5504
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpriindi (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem xpriindi
StepHypRef Expression
1 iineq1 4768 . . . . . . 7 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
2 0iin 4811 . . . . . . 7 𝑥 ∈ ∅ 𝐵 = V
31, 2syl6eq 2830 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 𝐵 = V)
43ineq2d 4037 . . . . 5 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = (𝐷 ∩ V))
5 inv1 4196 . . . . 5 (𝐷 ∩ V) = 𝐷
64, 5syl6eq 2830 . . . 4 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = 𝐷)
76xpeq2d 5385 . . 3 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = (𝐶 × 𝐷))
8 iineq1 4768 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = 𝑥 ∈ ∅ (𝐶 × 𝐵))
9 0iin 4811 . . . . . 6 𝑥 ∈ ∅ (𝐶 × 𝐵) = V
108, 9syl6eq 2830 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = V)
1110ineq2d 4037 . . . 4 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = ((𝐶 × 𝐷) ∩ V))
12 inv1 4196 . . . 4 ((𝐶 × 𝐷) ∩ V) = (𝐶 × 𝐷)
1311, 12syl6eq 2830 . . 3 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = (𝐶 × 𝐷))
147, 13eqtr4d 2817 . 2 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
15 xpindi 5501 . . 3 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵))
16 xpiindi 5503 . . . 4 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
1716ineq2d 4037 . . 3 (𝐴 ≠ ∅ → ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1815, 17syl5eq 2826 . 2 (𝐴 ≠ ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1914, 18pm2.61ine 3053 1 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wne 2969  Vcvv 3398  cin 3791  c0 4141   ciin 4754   × cxp 5353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-iin 4756  df-opab 4949  df-xp 5361  df-rel 5362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator