Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version |
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pol0N | ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqid 2738 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2738 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polvalN 37919 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴) → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
7 | 1, 6 | mpan2 688 | . 2 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
8 | 0iin 4993 | . . . 4 ⊢ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V | |
9 | 8 | ineq2i 4143 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V) |
10 | inv1 4328 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
11 | 9, 10 | eqtri 2766 | . 2 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴 |
12 | 7, 11 | eqtrdi 2794 | 1 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∩ ciin 4925 ‘cfv 6433 occoc 16970 Atomscatm 37277 pmapcpmap 37511 ⊥𝑃cpolN 37916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-polarityN 37917 |
This theorem is referenced by: 2pol0N 37925 1psubclN 37958 osumcllem9N 37978 pexmidN 37983 pexmidlem6N 37989 pexmidALTN 37992 |
Copyright terms: Public domain | W3C validator |