Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol0N Structured version   Visualization version   GIF version

Theorem pol0N 37923
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol0N (𝐾𝐵 → ( ‘∅) = 𝐴)

Proof of Theorem pol0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0ss 4330 . . 3 ∅ ⊆ 𝐴
2 eqid 2738 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 eqid 2738 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
5 polssat.p . . . 4 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 37919 . . 3 ((𝐾𝐵 ∧ ∅ ⊆ 𝐴) → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
71, 6mpan2 688 . 2 (𝐾𝐵 → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
8 0iin 4993 . . . 4 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V
98ineq2i 4143 . . 3 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V)
10 inv1 4328 . . 3 (𝐴 ∩ V) = 𝐴
119, 10eqtri 2766 . 2 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴
127, 11eqtrdi 2794 1 (𝐾𝐵 → ( ‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  c0 4256   ciin 4925  cfv 6433  occoc 16970  Atomscatm 37277  pmapcpmap 37511  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-polarityN 37917
This theorem is referenced by:  2pol0N  37925  1psubclN  37958  osumcllem9N  37978  pexmidN  37983  pexmidlem6N  37989  pexmidALTN  37992
  Copyright terms: Public domain W3C validator