Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol0N Structured version   Visualization version   GIF version

Theorem pol0N 39911
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol0N (𝐾𝐵 → ( ‘∅) = 𝐴)

Proof of Theorem pol0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0ss 4400 . . 3 ∅ ⊆ 𝐴
2 eqid 2737 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 eqid 2737 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
5 polssat.p . . . 4 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 39907 . . 3 ((𝐾𝐵 ∧ ∅ ⊆ 𝐴) → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
71, 6mpan2 691 . 2 (𝐾𝐵 → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
8 0iin 5064 . . . 4 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V
98ineq2i 4217 . . 3 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V)
10 inv1 4398 . . 3 (𝐴 ∩ V) = 𝐴
119, 10eqtri 2765 . 2 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴
127, 11eqtrdi 2793 1 (𝐾𝐵 → ( ‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  c0 4333   ciin 4992  cfv 6561  occoc 17305  Atomscatm 39264  pmapcpmap 39499  𝑃cpolN 39904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-polarityN 39905
This theorem is referenced by:  2pol0N  39913  1psubclN  39946  osumcllem9N  39966  pexmidN  39971  pexmidlem6N  39977  pexmidALTN  39980
  Copyright terms: Public domain W3C validator