![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version |
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | β’ π΄ = (AtomsβπΎ) |
polssat.p | β’ β₯ = (β₯πβπΎ) |
Ref | Expression |
---|---|
pol0N | β’ (πΎ β π΅ β ( β₯ ββ ) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . 3 β’ β β π΄ | |
2 | eqid 2732 | . . . 4 β’ (ocβπΎ) = (ocβπΎ) | |
3 | polssat.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | eqid 2732 | . . . 4 β’ (pmapβπΎ) = (pmapβπΎ) | |
5 | polssat.p | . . . 4 β’ β₯ = (β₯πβπΎ) | |
6 | 2, 3, 4, 5 | polvalN 38771 | . . 3 β’ ((πΎ β π΅ β§ β β π΄) β ( β₯ ββ ) = (π΄ β© β© π β β ((pmapβπΎ)β((ocβπΎ)βπ)))) |
7 | 1, 6 | mpan2 689 | . 2 β’ (πΎ β π΅ β ( β₯ ββ ) = (π΄ β© β© π β β ((pmapβπΎ)β((ocβπΎ)βπ)))) |
8 | 0iin 5067 | . . . 4 β’ β© π β β ((pmapβπΎ)β((ocβπΎ)βπ)) = V | |
9 | 8 | ineq2i 4209 | . . 3 β’ (π΄ β© β© π β β ((pmapβπΎ)β((ocβπΎ)βπ))) = (π΄ β© V) |
10 | inv1 4394 | . . 3 β’ (π΄ β© V) = π΄ | |
11 | 9, 10 | eqtri 2760 | . 2 β’ (π΄ β© β© π β β ((pmapβπΎ)β((ocβπΎ)βπ))) = π΄ |
12 | 7, 11 | eqtrdi 2788 | 1 β’ (πΎ β π΅ β ( β₯ ββ ) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β© cin 3947 β wss 3948 β c0 4322 β© ciin 4998 βcfv 6543 occoc 17204 Atomscatm 38128 pmapcpmap 38363 β₯πcpolN 38768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-polarityN 38769 |
This theorem is referenced by: 2pol0N 38777 1psubclN 38810 osumcllem9N 38830 pexmidN 38835 pexmidlem6N 38841 pexmidALTN 38844 |
Copyright terms: Public domain | W3C validator |