| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version | ||
| Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| pol0N | ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqid 2736 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2736 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polvalN 39929 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴) → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 8 | 0iin 5045 | . . . 4 ⊢ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V | |
| 9 | 8 | ineq2i 4197 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V) |
| 10 | inv1 4378 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 11 | 9, 10 | eqtri 2759 | . 2 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴 |
| 12 | 7, 11 | eqtrdi 2787 | 1 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∩ ciin 4973 ‘cfv 6536 occoc 17284 Atomscatm 39286 pmapcpmap 39521 ⊥𝑃cpolN 39926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-polarityN 39927 |
| This theorem is referenced by: 2pol0N 39935 1psubclN 39968 osumcllem9N 39988 pexmidN 39993 pexmidlem6N 39999 pexmidALTN 40002 |
| Copyright terms: Public domain | W3C validator |