| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version | ||
| Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| pol0N | ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqid 2731 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2731 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polvalN 40014 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴) → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 8 | 0iin 5010 | . . . 4 ⊢ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V | |
| 9 | 8 | ineq2i 4164 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V) |
| 10 | inv1 4345 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 11 | 9, 10 | eqtri 2754 | . 2 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴 |
| 12 | 7, 11 | eqtrdi 2782 | 1 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ∩ ciin 4940 ‘cfv 6481 occoc 17169 Atomscatm 39372 pmapcpmap 39606 ⊥𝑃cpolN 40011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-polarityN 40012 |
| This theorem is referenced by: 2pol0N 40020 1psubclN 40053 osumcllem9N 40073 pexmidN 40078 pexmidlem6N 40084 pexmidALTN 40087 |
| Copyright terms: Public domain | W3C validator |