| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version | ||
| Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| pol0N | ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqid 2729 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2729 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polvalN 39892 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴) → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 8 | 0iin 5023 | . . . 4 ⊢ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V | |
| 9 | 8 | ineq2i 4176 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V) |
| 10 | inv1 4357 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 11 | 9, 10 | eqtri 2752 | . 2 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴 |
| 12 | 7, 11 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ∩ ciin 4952 ‘cfv 6499 occoc 17204 Atomscatm 39249 pmapcpmap 39484 ⊥𝑃cpolN 39889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-polarityN 39890 |
| This theorem is referenced by: 2pol0N 39898 1psubclN 39931 osumcllem9N 39951 pexmidN 39956 pexmidlem6N 39962 pexmidALTN 39965 |
| Copyright terms: Public domain | W3C validator |