Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol0N Structured version   Visualization version   GIF version

Theorem pol0N 40018
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol0N (𝐾𝐵 → ( ‘∅) = 𝐴)

Proof of Theorem pol0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0ss 4347 . . 3 ∅ ⊆ 𝐴
2 eqid 2731 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 eqid 2731 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
5 polssat.p . . . 4 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 40014 . . 3 ((𝐾𝐵 ∧ ∅ ⊆ 𝐴) → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
71, 6mpan2 691 . 2 (𝐾𝐵 → ( ‘∅) = (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
8 0iin 5010 . . . 4 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V
98ineq2i 4164 . . 3 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V)
10 inv1 4345 . . 3 (𝐴 ∩ V) = 𝐴
119, 10eqtri 2754 . 2 (𝐴 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴
127, 11eqtrdi 2782 1 (𝐾𝐵 → ( ‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  c0 4280   ciin 4940  cfv 6481  occoc 17169  Atomscatm 39372  pmapcpmap 39606  𝑃cpolN 40011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-polarityN 40012
This theorem is referenced by:  2pol0N  40020  1psubclN  40053  osumcllem9N  40073  pexmidN  40078  pexmidlem6N  40084  pexmidALTN  40087
  Copyright terms: Public domain W3C validator