![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol0N | Structured version Visualization version GIF version |
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pol0N | ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqid 2740 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2740 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polvalN 39862 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴) → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
7 | 1, 6 | mpan2 690 | . 2 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
8 | 0iin 5087 | . . . 4 ⊢ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) = V | |
9 | 8 | ineq2i 4238 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = (𝐴 ∩ V) |
10 | inv1 4421 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
11 | 9, 10 | eqtri 2768 | . 2 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ ∅ ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) = 𝐴 |
12 | 7, 11 | eqtrdi 2796 | 1 ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 ‘cfv 6573 occoc 17319 Atomscatm 39219 pmapcpmap 39454 ⊥𝑃cpolN 39859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-polarityN 39860 |
This theorem is referenced by: 2pol0N 39868 1psubclN 39901 osumcllem9N 39921 pexmidN 39926 pexmidlem6N 39932 pexmidALTN 39935 |
Copyright terms: Public domain | W3C validator |