Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol0N Structured version   Visualization version   GIF version

Theorem pol0N 38775
Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atomsβ€˜πΎ)
polssat.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pol0N (𝐾 ∈ 𝐡 β†’ ( βŠ₯ β€˜βˆ…) = 𝐴)

Proof of Theorem pol0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0ss 4396 . . 3 βˆ… βŠ† 𝐴
2 eqid 2732 . . . 4 (ocβ€˜πΎ) = (ocβ€˜πΎ)
3 polssat.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 eqid 2732 . . . 4 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
5 polssat.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
62, 3, 4, 5polvalN 38771 . . 3 ((𝐾 ∈ 𝐡 ∧ βˆ… βŠ† 𝐴) β†’ ( βŠ₯ β€˜βˆ…) = (𝐴 ∩ ∩ 𝑝 ∈ βˆ… ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘))))
71, 6mpan2 689 . 2 (𝐾 ∈ 𝐡 β†’ ( βŠ₯ β€˜βˆ…) = (𝐴 ∩ ∩ 𝑝 ∈ βˆ… ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘))))
8 0iin 5067 . . . 4 ∩ 𝑝 ∈ βˆ… ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘)) = V
98ineq2i 4209 . . 3 (𝐴 ∩ ∩ 𝑝 ∈ βˆ… ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘))) = (𝐴 ∩ V)
10 inv1 4394 . . 3 (𝐴 ∩ V) = 𝐴
119, 10eqtri 2760 . 2 (𝐴 ∩ ∩ 𝑝 ∈ βˆ… ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘))) = 𝐴
127, 11eqtrdi 2788 1 (𝐾 ∈ 𝐡 β†’ ( βŠ₯ β€˜βˆ…) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  βˆ© ciin 4998  β€˜cfv 6543  occoc 17204  Atomscatm 38128  pmapcpmap 38363  βŠ₯𝑃cpolN 38768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-polarityN 38769
This theorem is referenced by:  2pol0N  38777  1psubclN  38810  osumcllem9N  38830  pexmidN  38835  pexmidlem6N  38841  pexmidALTN  38844
  Copyright terms: Public domain W3C validator