| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6543 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 I cid 5557 ◡ccnv 5664 ∘ ccom 5669 Rel wrel 5670 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6543 |
| This theorem is referenced by: 0nelfun 6564 funeu 6571 nfunv 6579 funopg 6580 funssres 6590 funun 6592 fununfun 6594 fununi 6621 funcnvres2 6626 fnrel 6650 fcoi1 6762 f1orel 6831 funbrfv 6937 funbrfv2b 6946 funfv2 6977 funfvbrb 7051 fimacnvinrn 7071 fvn0ssdmfun 7074 funopsn 7148 funresdfunsn 7191 funexw 7958 funfv1st2nd 8053 funelss 8054 funeldmdif 8055 frrlem6 8298 wfrrelOLD 8336 tfrlem6 8404 tfr2b 8418 pmresg 8892 fundmen 9053 resfifsupp 9419 rankwflemb 9815 gruima 10824 structcnvcnv 17172 inviso1 17781 setciso 18107 rngciso 20606 ringciso 20640 nolt02o 27676 nogt01o 27677 nosupbnd1 27695 nosupbnd2lem1 27696 nosupbnd2 27697 noinfbnd1 27710 noinfbnd2lem1 27711 noinfbnd2 27712 noetasuplem2 27715 noetasuplem3 27716 noetasuplem4 27717 noetainflem2 27719 edg0iedg0 29000 edg0usgr 29198 usgr1v0edg 29202 fgreu 32617 fressupp 32632 gsumhashmul 33003 cycpmconjvlem 33100 cycpmconjslem2 33114 bnj1379 34803 funen1cnv 35061 fundmpss 35726 funsseq 35727 imageval 35890 imagesset 35913 cocnv 37691 frege124d 43736 frege129d 43738 frege133d 43740 funbrafv 47128 funbrafv2b 47129 funbrafv2 47217 isubgrvtxuhgr 47808 rngcisoALTV 48151 ringcisoALTV 48185 ackvalsuc0val 48566 |
| Copyright terms: Public domain | W3C validator |