| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6488 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 I cid 5517 ◡ccnv 5622 ∘ ccom 5627 Rel wrel 5628 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 |
| This theorem is referenced by: 0nelfun 6504 funeu 6511 nfunv 6519 funopg 6520 funssres 6530 funun 6532 fununfun 6534 fununi 6561 funcnvres2 6566 fnrel 6588 fcoi1 6702 f1orel 6771 funbrfv 6875 funbrfv2b 6884 funfv2 6915 funfvbrb 6989 fimacnvinrn 7009 fvn0ssdmfun 7012 funopsn 7086 funresdfunsn 7129 funexw 7894 funfv1st2nd 7988 funelss 7989 funeldmdif 7990 frrlem6 8231 tfrlem6 8311 tfr2b 8325 pmresg 8804 fundmen 8963 resfifsupp 9306 rankwflemb 9708 gruima 10715 structcnvcnv 17082 inviso1 17691 setciso 18016 rngciso 20541 ringciso 20575 nolt02o 27623 nogt01o 27624 nosupbnd1 27642 nosupbnd2lem1 27643 nosupbnd2 27644 noinfbnd1 27657 noinfbnd2lem1 27658 noinfbnd2 27659 noetasuplem2 27662 noetasuplem3 27663 noetasuplem4 27664 noetainflem2 27666 edg0iedg0 29018 edg0usgr 29216 usgr1v0edg 29220 fgreu 32629 fressupp 32644 gsumhashmul 33027 cycpmconjvlem 33096 cycpmconjslem2 33110 bnj1379 34796 funen1cnv 35054 fundmpss 35739 funsseq 35740 imageval 35903 imagesset 35926 cocnv 37704 frege124d 43734 frege129d 43736 frege133d 43738 funbrafv 47143 funbrafv2b 47144 funbrafv2 47232 isubgrvtxuhgr 47849 rngcisoALTV 48262 ringcisoALTV 48296 ackvalsuc0val 48673 |
| Copyright terms: Public domain | W3C validator |