| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6516 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 ∘ ccom 5645 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6516 |
| This theorem is referenced by: 0nelfun 6537 funeu 6544 nfunv 6552 funopg 6553 funssres 6563 funun 6565 fununfun 6567 fununi 6594 funcnvres2 6599 fnrel 6623 fcoi1 6737 f1orel 6806 funbrfv 6912 funbrfv2b 6921 funfv2 6952 funfvbrb 7026 fimacnvinrn 7046 fvn0ssdmfun 7049 funopsn 7123 funresdfunsn 7166 funexw 7933 funfv1st2nd 8028 funelss 8029 funeldmdif 8030 frrlem6 8273 tfrlem6 8353 tfr2b 8367 pmresg 8846 fundmen 9005 resfifsupp 9355 rankwflemb 9753 gruima 10762 structcnvcnv 17130 inviso1 17735 setciso 18060 rngciso 20554 ringciso 20588 nolt02o 27614 nogt01o 27615 nosupbnd1 27633 nosupbnd2lem1 27634 nosupbnd2 27635 noinfbnd1 27648 noinfbnd2lem1 27649 noinfbnd2 27650 noetasuplem2 27653 noetasuplem3 27654 noetasuplem4 27655 noetainflem2 27657 edg0iedg0 28989 edg0usgr 29187 usgr1v0edg 29191 fgreu 32603 fressupp 32618 gsumhashmul 33008 cycpmconjvlem 33105 cycpmconjslem2 33119 bnj1379 34827 funen1cnv 35085 fundmpss 35761 funsseq 35762 imageval 35925 imagesset 35948 cocnv 37726 frege124d 43757 frege129d 43759 frege133d 43761 funbrafv 47163 funbrafv2b 47164 funbrafv2 47252 isubgrvtxuhgr 47868 rngcisoALTV 48269 ringcisoALTV 48303 ackvalsuc0val 48680 |
| Copyright terms: Public domain | W3C validator |