| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6488 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 I cid 5513 ◡ccnv 5618 ∘ ccom 5623 Rel wrel 5624 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 |
| This theorem is referenced by: 0nelfun 6504 funeu 6511 nfunv 6519 funopg 6520 funssres 6530 funun 6532 fununfun 6534 fununi 6561 funcnvres2 6566 fnrel 6588 fcoi1 6702 f1orel 6771 funbrfv 6876 funbrfv2b 6885 funfv2 6916 funfvbrb 6990 fimacnvinrn 7010 fvn0ssdmfun 7013 funopsn 7087 funresdfunsn 7129 funexw 7890 funfv1st2nd 7984 funelss 7985 funeldmdif 7986 frrlem6 8227 tfrlem6 8307 tfr2b 8321 pmresg 8800 fundmen 8960 resfifsupp 9288 rankwflemb 9693 gruima 10700 structcnvcnv 17066 inviso1 17675 setciso 18000 rngciso 20555 ringciso 20589 nolt02o 27635 nogt01o 27636 nosupbnd1 27654 nosupbnd2lem1 27655 nosupbnd2 27656 noinfbnd1 27669 noinfbnd2lem1 27670 noinfbnd2 27671 noetasuplem2 27674 noetasuplem3 27675 noetasuplem4 27676 noetainflem2 27678 edg0iedg0 29035 edg0usgr 29233 usgr1v0edg 29237 fgreu 32656 fressupp 32673 gsumhashmul 33048 cycpmconjvlem 33117 cycpmconjslem2 33131 bnj1379 34863 funen1cnv 35121 fundmpss 35832 funsseq 35833 imageval 35993 imagesset 36018 cocnv 37785 frege124d 43878 frege129d 43880 frege133d 43882 funbrafv 47282 funbrafv2b 47283 funbrafv2 47371 isubgrvtxuhgr 47988 rngcisoALTV 48401 ringcisoALTV 48435 ackvalsuc0val 48812 |
| Copyright terms: Public domain | W3C validator |