![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6565 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 I cid 5582 ◡ccnv 5688 ∘ ccom 5693 Rel wrel 5694 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6565 |
This theorem is referenced by: 0nelfun 6586 funeu 6593 nfunv 6601 funopg 6602 funssres 6612 funun 6614 fununfun 6616 fununi 6643 funcnvres2 6648 fnrel 6671 fcoi1 6783 f1orel 6852 funbrfv 6958 funbrfv2b 6966 funfv2 6997 funfvbrb 7071 fimacnvinrn 7091 fvn0ssdmfun 7094 funopsn 7168 funresdfunsn 7209 funexw 7975 funfv1st2nd 8070 funelss 8071 funeldmdif 8072 frrlem6 8315 wfrrelOLD 8353 tfrlem6 8421 tfr2b 8435 pmresg 8909 fundmen 9070 resfifsupp 9435 rankwflemb 9831 gruima 10840 structcnvcnv 17187 inviso1 17814 setciso 18145 rngciso 20655 ringciso 20689 nolt02o 27755 nogt01o 27756 nosupbnd1 27774 nosupbnd2lem1 27775 nosupbnd2 27776 noinfbnd1 27789 noinfbnd2lem1 27790 noinfbnd2 27791 noetasuplem2 27794 noetasuplem3 27795 noetasuplem4 27796 noetainflem2 27798 edg0iedg0 29087 edg0usgr 29285 usgr1v0edg 29289 fgreu 32689 fressupp 32703 gsumhashmul 33047 cycpmconjvlem 33144 cycpmconjslem2 33158 bnj1379 34823 funen1cnv 35081 fundmpss 35748 funsseq 35749 imageval 35912 imagesset 35935 cocnv 37712 frege124d 43751 frege129d 43753 frege133d 43755 funbrafv 47108 funbrafv2b 47109 funbrafv2 47197 isubgrvtxuhgr 47788 rngcisoALTV 48121 ringcisoALTV 48155 ackvalsuc0val 48537 |
Copyright terms: Public domain | W3C validator |