![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6575 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 I cid 5592 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6575 |
This theorem is referenced by: 0nelfun 6596 funeu 6603 nfunv 6611 funopg 6612 funssres 6622 funun 6624 fununfun 6626 fununi 6653 funcnvres2 6658 fnrel 6681 fcoi1 6795 f1orel 6865 funbrfv 6971 funbrfv2b 6979 funfv2 7010 funfvbrb 7084 fimacnvinrn 7105 fvn0ssdmfun 7108 funopsn 7182 funresdfunsn 7223 funexw 7992 funfv1st2nd 8087 funelss 8088 funeldmdif 8089 frrlem6 8332 wfrrelOLD 8370 tfrlem6 8438 tfr2b 8452 pmresg 8928 fundmen 9096 resfifsupp 9466 rankwflemb 9862 gruima 10871 structcnvcnv 17200 inviso1 17827 setciso 18158 rngciso 20660 ringciso 20694 nolt02o 27758 nogt01o 27759 nosupbnd1 27777 nosupbnd2lem1 27778 nosupbnd2 27779 noinfbnd1 27792 noinfbnd2lem1 27793 noinfbnd2 27794 noetasuplem2 27797 noetasuplem3 27798 noetasuplem4 27799 noetainflem2 27801 edg0iedg0 29090 edg0usgr 29288 usgr1v0edg 29292 fgreu 32690 fressupp 32700 gsumhashmul 33040 cycpmconjvlem 33134 cycpmconjslem2 33148 bnj1379 34806 funen1cnv 35064 fundmpss 35730 funsseq 35731 imageval 35894 imagesset 35917 cocnv 37685 frege124d 43723 frege129d 43725 frege133d 43727 funbrafv 47073 funbrafv2b 47074 funbrafv2 47162 isubgrvtxuhgr 47736 rngcisoALTV 48000 ringcisoALTV 48034 ackvalsuc0val 48421 |
Copyright terms: Public domain | W3C validator |