Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6420 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 I cid 5479 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fun 6420 |
This theorem is referenced by: 0nelfun 6436 funeu 6443 nfunv 6451 funopg 6452 funssres 6462 funun 6464 fununfun 6466 fununi 6493 funcnvres2 6498 fnrel 6519 fcoi1 6632 f1orel 6703 funbrfv 6802 funbrfv2b 6809 funfv2 6838 funfvbrb 6910 fimacnvinrn 6931 fvn0ssdmfun 6934 funopsn 7002 funresdfunsn 7043 funexw 7768 funfv1st2nd 7860 funelss 7861 funeldmdif 7862 frrlem6 8078 wfrrelOLD 8116 tfrlem6 8184 tfr2b 8198 pmresg 8616 fundmen 8775 resfifsupp 9086 rankwflemb 9482 gruima 10489 structcnvcnv 16782 inviso1 17395 setciso 17722 edg0iedg0 27328 edg0usgr 27523 usgr1v0edg 27527 fgreu 30911 fressupp 30924 gsumhashmul 31218 cycpmconjvlem 31310 cycpmconjslem2 31324 bnj1379 32710 funen1cnv 32960 fundmpss 33646 funsseq 33648 nolt02o 33825 nogt01o 33826 nosupbnd1 33844 nosupbnd2lem1 33845 nosupbnd2 33846 noinfbnd1 33859 noinfbnd2lem1 33860 noinfbnd2 33861 noetasuplem2 33864 noetasuplem3 33865 noetasuplem4 33866 noetainflem2 33868 imageval 34159 imagesset 34182 cocnv 35810 frege124d 41258 frege129d 41260 frege133d 41262 funbrafv 44537 funbrafv2b 44538 funbrafv2 44626 rngciso 45428 rngcisoALTV 45440 ringciso 45479 ringcisoALTV 45503 ackvalsuc0val 45921 |
Copyright terms: Public domain | W3C validator |