| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6538 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 I cid 5552 ◡ccnv 5658 ∘ ccom 5663 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6538 |
| This theorem is referenced by: 0nelfun 6559 funeu 6566 nfunv 6574 funopg 6575 funssres 6585 funun 6587 fununfun 6589 fununi 6616 funcnvres2 6621 fnrel 6645 fcoi1 6757 f1orel 6826 funbrfv 6932 funbrfv2b 6941 funfv2 6972 funfvbrb 7046 fimacnvinrn 7066 fvn0ssdmfun 7069 funopsn 7143 funresdfunsn 7186 funexw 7955 funfv1st2nd 8050 funelss 8051 funeldmdif 8052 frrlem6 8295 wfrrelOLD 8333 tfrlem6 8401 tfr2b 8415 pmresg 8889 fundmen 9050 resfifsupp 9414 rankwflemb 9812 gruima 10821 structcnvcnv 17177 inviso1 17784 setciso 18109 rngciso 20603 ringciso 20637 nolt02o 27664 nogt01o 27665 nosupbnd1 27683 nosupbnd2lem1 27684 nosupbnd2 27685 noinfbnd1 27698 noinfbnd2lem1 27699 noinfbnd2 27700 noetasuplem2 27703 noetasuplem3 27704 noetasuplem4 27705 noetainflem2 27707 edg0iedg0 29039 edg0usgr 29237 usgr1v0edg 29241 fgreu 32655 fressupp 32670 gsumhashmul 33060 cycpmconjvlem 33157 cycpmconjslem2 33171 bnj1379 34866 funen1cnv 35124 fundmpss 35789 funsseq 35790 imageval 35953 imagesset 35976 cocnv 37754 frege124d 43752 frege129d 43754 frege133d 43756 funbrafv 47154 funbrafv2b 47155 funbrafv2 47243 isubgrvtxuhgr 47844 rngcisoALTV 48219 ringcisoALTV 48253 ackvalsuc0val 48634 |
| Copyright terms: Public domain | W3C validator |