| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6483 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 I cid 5510 ◡ccnv 5615 ∘ ccom 5620 Rel wrel 5621 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6483 |
| This theorem is referenced by: 0nelfun 6499 funeu 6506 nfunv 6514 funopg 6515 funssres 6525 funun 6527 fununfun 6529 fununi 6556 funcnvres2 6561 fnrel 6583 fcoi1 6697 f1orel 6766 funbrfv 6870 funbrfv2b 6879 funfv2 6910 funfvbrb 6984 fimacnvinrn 7004 fvn0ssdmfun 7007 funopsn 7081 funresdfunsn 7123 funexw 7884 funfv1st2nd 7978 funelss 7979 funeldmdif 7980 frrlem6 8221 tfrlem6 8301 tfr2b 8315 pmresg 8794 fundmen 8953 resfifsupp 9281 rankwflemb 9683 gruima 10690 structcnvcnv 17061 inviso1 17670 setciso 17995 rngciso 20551 ringciso 20585 nolt02o 27632 nogt01o 27633 nosupbnd1 27651 nosupbnd2lem1 27652 nosupbnd2 27653 noinfbnd1 27666 noinfbnd2lem1 27667 noinfbnd2 27668 noetasuplem2 27671 noetasuplem3 27672 noetasuplem4 27673 noetainflem2 27675 edg0iedg0 29031 edg0usgr 29229 usgr1v0edg 29233 fgreu 32649 fressupp 32664 gsumhashmul 33036 cycpmconjvlem 33105 cycpmconjslem2 33119 bnj1379 34837 funen1cnv 35095 fundmpss 35799 funsseq 35800 imageval 35963 imagesset 35986 cocnv 37764 frege124d 43793 frege129d 43795 frege133d 43797 funbrafv 47188 funbrafv2b 47189 funbrafv2 47277 isubgrvtxuhgr 47894 rngcisoALTV 48307 ringcisoALTV 48341 ackvalsuc0val 48718 |
| Copyright terms: Public domain | W3C validator |