| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6513 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 I cid 5532 ◡ccnv 5637 ∘ ccom 5642 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6513 |
| This theorem is referenced by: 0nelfun 6534 funeu 6541 nfunv 6549 funopg 6550 funssres 6560 funun 6562 fununfun 6564 fununi 6591 funcnvres2 6596 fnrel 6620 fcoi1 6734 f1orel 6803 funbrfv 6909 funbrfv2b 6918 funfv2 6949 funfvbrb 7023 fimacnvinrn 7043 fvn0ssdmfun 7046 funopsn 7120 funresdfunsn 7163 funexw 7930 funfv1st2nd 8025 funelss 8026 funeldmdif 8027 frrlem6 8270 tfrlem6 8350 tfr2b 8364 pmresg 8843 fundmen 9002 resfifsupp 9348 rankwflemb 9746 gruima 10755 structcnvcnv 17123 inviso1 17728 setciso 18053 rngciso 20547 ringciso 20581 nolt02o 27607 nogt01o 27608 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 noetasuplem2 27646 noetasuplem3 27647 noetasuplem4 27648 noetainflem2 27650 edg0iedg0 28982 edg0usgr 29180 usgr1v0edg 29184 fgreu 32596 fressupp 32611 gsumhashmul 33001 cycpmconjvlem 33098 cycpmconjslem2 33112 bnj1379 34820 funen1cnv 35078 fundmpss 35754 funsseq 35755 imageval 35918 imagesset 35941 cocnv 37719 frege124d 43750 frege129d 43752 frege133d 43754 funbrafv 47159 funbrafv2b 47160 funbrafv2 47248 isubgrvtxuhgr 47864 rngcisoALTV 48265 ringcisoALTV 48299 ackvalsuc0val 48676 |
| Copyright terms: Public domain | W3C validator |