Proof of Theorem distrpi
Step | Hyp | Ref
| Expression |
1 | | pinn 10565 |
. . . 4
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
2 | | pinn 10565 |
. . . 4
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
3 | | pinn 10565 |
. . . 4
⊢ (𝐶 ∈ N →
𝐶 ∈
ω) |
4 | | nndi 8416 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
5 | 1, 2, 3, 4 | syl3an 1158 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·o (𝐵
+o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
6 | | addclpi 10579 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) ∈ N) |
7 | | mulpiord 10572 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
(𝐵
+N 𝐶) ∈ N) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) |
8 | 6, 7 | sylan2 592 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) |
9 | | addpiord 10571 |
. . . . . . 7
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) = (𝐵 +o 𝐶)) |
10 | 9 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·o (𝐵
+N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
11 | 10 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·o (𝐵
+N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
12 | 8, 11 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
13 | 12 | 3impb 1113 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
14 | | mulclpi 10580 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
·N 𝐵) ∈ N) |
15 | | mulclpi 10580 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) ∈ N) |
16 | | addpiord 10571 |
. . . . . 6
⊢ (((𝐴
·N 𝐵) ∈ N ∧ (𝐴
·N 𝐶) ∈ N) → ((𝐴
·N 𝐵) +N (𝐴
·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶))) |
17 | 14, 15, 16 | syl2an 595 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶))) |
18 | | mulpiord 10572 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
·N 𝐵) = (𝐴 ·o 𝐵)) |
19 | | mulpiord 10572 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) = (𝐴 ·o 𝐶)) |
20 | 18, 19 | oveqan12d 7274 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
21 | 17, 20 | eqtrd 2778 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
22 | 21 | 3impdi 1348 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → ((𝐴
·N 𝐵) +N (𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
23 | 5, 13, 22 | 3eqtr4d 2788 |
. 2
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶))) |
24 | | dmaddpi 10577 |
. . 3
⊢ dom
+N = (N ×
N) |
25 | | 0npi 10569 |
. . 3
⊢ ¬
∅ ∈ N |
26 | | dmmulpi 10578 |
. . 3
⊢ dom
·N = (N ×
N) |
27 | 24, 25, 26 | ndmovdistr 7439 |
. 2
⊢ (¬
(𝐴 ∈ N
∧ 𝐵 ∈
N ∧ 𝐶
∈ N) → (𝐴 ·N (𝐵 +N
𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶))) |
28 | 23, 27 | pm2.61i 182 |
1
⊢ (𝐴
·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) |