MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Structured version   Visualization version   GIF version

Theorem distrpi 9926
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 9906 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 9906 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 9906 . . . 4 (𝐶N𝐶 ∈ ω)
4 nndi 7861 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
51, 2, 3, 4syl3an 1163 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
6 addclpi 9920 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 9913 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +N 𝐶)))
86, 7sylan2 580 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +N 𝐶)))
9 addpiord 9912 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +𝑜 𝐶))
109oveq2d 6812 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·𝑜 (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
1110adantl 467 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·𝑜 (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
128, 11eqtrd 2805 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
13123impb 1107 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
14 mulclpi 9921 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 9921 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 9912 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 583 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)))
18 mulpiord 9913 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
19 mulpiord 9913 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
2018, 19oveqan12d 6815 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
2117, 20eqtrd 2805 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
22213impdi 1443 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
235, 13, 223eqtr4d 2815 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
24 dmaddpi 9918 . . 3 dom +N = (N × N)
25 0npi 9910 . . 3 ¬ ∅ ∈ N
26 dmmulpi 9919 . . 3 dom ·N = (N × N)
2724, 25, 26ndmovdistr 6974 . 2 (¬ (𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
2823, 27pm2.61i 176 1 (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 382  w3a 1071   = wceq 1631  wcel 2145  (class class class)co 6796  ωcom 7216   +𝑜 coa 7714   ·𝑜 comu 7715  Ncnpi 9872   +N cpli 9873   ·N cmi 9874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-oadd 7721  df-omul 7722  df-ni 9900  df-pli 9901  df-mi 9902
This theorem is referenced by:  adderpqlem  9982  addassnq  9986  distrnq  9989  ltanq  9999  ltexnq  10003
  Copyright terms: Public domain W3C validator