Proof of Theorem distrpi
| Step | Hyp | Ref
| Expression |
| 1 | | pinn 10892 |
. . . 4
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
| 2 | | pinn 10892 |
. . . 4
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 3 | | pinn 10892 |
. . . 4
⊢ (𝐶 ∈ N →
𝐶 ∈
ω) |
| 4 | | nndi 8635 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 5 | 1, 2, 3, 4 | syl3an 1160 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·o (𝐵
+o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 6 | | addclpi 10906 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) ∈ N) |
| 7 | | mulpiord 10899 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
(𝐵
+N 𝐶) ∈ N) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) |
| 8 | 6, 7 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) |
| 9 | | addpiord 10898 |
. . . . . . 7
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) = (𝐵 +o 𝐶)) |
| 10 | 9 | oveq2d 7421 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·o (𝐵
+N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·o (𝐵
+N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 12 | 8, 11 | eqtrd 2770 |
. . . 4
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 13 | 12 | 3impb 1114 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 14 | | mulclpi 10907 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
·N 𝐵) ∈ N) |
| 15 | | mulclpi 10907 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) ∈ N) |
| 16 | | addpiord 10898 |
. . . . . 6
⊢ (((𝐴
·N 𝐵) ∈ N ∧ (𝐴
·N 𝐶) ∈ N) → ((𝐴
·N 𝐵) +N (𝐴
·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶))) |
| 17 | 14, 15, 16 | syl2an 596 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶))) |
| 18 | | mulpiord 10899 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
·N 𝐵) = (𝐴 ·o 𝐵)) |
| 19 | | mulpiord 10899 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) = (𝐴 ·o 𝐶)) |
| 20 | 18, 19 | oveqan12d 7424 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +o (𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 21 | 17, 20 | eqtrd 2770 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐴 ∈
N ∧ 𝐶
∈ N)) → ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 22 | 21 | 3impdi 1351 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → ((𝐴
·N 𝐵) +N (𝐴
·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 23 | 5, 13, 22 | 3eqtr4d 2780 |
. 2
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶))) |
| 24 | | dmaddpi 10904 |
. . 3
⊢ dom
+N = (N ×
N) |
| 25 | | 0npi 10896 |
. . 3
⊢ ¬
∅ ∈ N |
| 26 | | dmmulpi 10905 |
. . 3
⊢ dom
·N = (N ×
N) |
| 27 | 24, 25, 26 | ndmovdistr 7596 |
. 2
⊢ (¬
(𝐴 ∈ N
∧ 𝐵 ∈
N ∧ 𝐶
∈ N) → (𝐴 ·N (𝐵 +N
𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶))) |
| 28 | 23, 27 | pm2.61i 182 |
1
⊢ (𝐴
·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N
(𝐴
·N 𝐶)) |