MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Structured version   Visualization version   GIF version

Theorem distrpi 10811
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 10791 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10791 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 10791 . . . 4 (𝐶N𝐶 ∈ ω)
4 nndi 8548 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
51, 2, 3, 4syl3an 1160 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
6 addclpi 10805 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 10798 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
86, 7sylan2 593 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
9 addpiord 10797 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
109oveq2d 7369 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
1110adantl 481 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
128, 11eqtrd 2764 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
13123impb 1114 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
14 mulclpi 10806 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 10806 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 10797 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 596 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
18 mulpiord 10798 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
19 mulpiord 10798 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
2018, 19oveqan12d 7372 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2117, 20eqtrd 2764 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
22213impdi 1351 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
235, 13, 223eqtr4d 2774 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
24 dmaddpi 10803 . . 3 dom +N = (N × N)
25 0npi 10795 . . 3 ¬ ∅ ∈ N
26 dmmulpi 10804 . . 3 dom ·N = (N × N)
2724, 25, 26ndmovdistr 7542 . 2 (¬ (𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
2823, 27pm2.61i 182 1 (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7353  ωcom 7806   +o coa 8392   ·o comu 8393  Ncnpi 10757   +N cpli 10758   ·N cmi 10759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400  df-ni 10785  df-pli 10786  df-mi 10787
This theorem is referenced by:  adderpqlem  10867  addassnq  10871  distrnq  10874  ltanq  10884  ltexnq  10888
  Copyright terms: Public domain W3C validator