MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Structured version   Visualization version   GIF version

Theorem distrpi 10654
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 10634 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10634 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 10634 . . . 4 (𝐶N𝐶 ∈ ω)
4 nndi 8454 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
51, 2, 3, 4syl3an 1159 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
6 addclpi 10648 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 10641 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
86, 7sylan2 593 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
9 addpiord 10640 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
109oveq2d 7291 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
1110adantl 482 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
128, 11eqtrd 2778 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
13123impb 1114 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
14 mulclpi 10649 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 10649 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 10640 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 596 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
18 mulpiord 10641 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
19 mulpiord 10641 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
2018, 19oveqan12d 7294 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2117, 20eqtrd 2778 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
22213impdi 1349 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
235, 13, 223eqtr4d 2788 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
24 dmaddpi 10646 . . 3 dom +N = (N × N)
25 0npi 10638 . . 3 ¬ ∅ ∈ N
26 dmmulpi 10647 . . 3 dom ·N = (N × N)
2724, 25, 26ndmovdistr 7461 . 2 (¬ (𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
2823, 27pm2.61i 182 1 (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  (class class class)co 7275  ωcom 7712   +o coa 8294   ·o comu 8295  Ncnpi 10600   +N cpli 10601   ·N cmi 10602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301  df-omul 8302  df-ni 10628  df-pli 10629  df-mi 10630
This theorem is referenced by:  adderpqlem  10710  addassnq  10714  distrnq  10717  ltanq  10727  ltexnq  10731
  Copyright terms: Public domain W3C validator