MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanpi Structured version   Visualization version   GIF version

Theorem mulcanpi 10813
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanpi ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpi
StepHypRef Expression
1 mulclpi 10806 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
2 eleq1 2816 . . . . . . . . . 10 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴 ·N 𝐵) ∈ N ↔ (𝐴 ·N 𝐶) ∈ N))
31, 2imbitrid 244 . . . . . . . . 9 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → (𝐴 ·N 𝐶) ∈ N))
43imp 406 . . . . . . . 8 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 ·N 𝐶) ∈ N)
5 dmmulpi 10804 . . . . . . . . 9 dom ·N = (N × N)
6 0npi 10795 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 7539 . . . . . . . 8 ((𝐴 ·N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 484 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 mulpiord 10798 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
1110adantr 480 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
12 mulpiord 10798 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
1312adantlr 715 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
1411, 13eqeq12d 2745 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶)))
15 pinn 10791 . . . . . . . . . . . . 13 (𝐴N𝐴 ∈ ω)
16 pinn 10791 . . . . . . . . . . . . 13 (𝐵N𝐵 ∈ ω)
17 pinn 10791 . . . . . . . . . . . . 13 (𝐶N𝐶 ∈ ω)
18 elni2 10790 . . . . . . . . . . . . . . . 16 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1918simprbi 496 . . . . . . . . . . . . . . 15 (𝐴N → ∅ ∈ 𝐴)
20 nnmcan 8559 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
2120biimpd 229 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2219, 21sylan2 593 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2322ex 412 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
2415, 16, 17, 23syl3an 1160 . . . . . . . . . . . 12 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
25243exp 1119 . . . . . . . . . . 11 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
2625com4r 94 . . . . . . . . . 10 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
2726pm2.43i 52 . . . . . . . . 9 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))
2827imp31 417 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2914, 28sylbid 240 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
309, 29sylan2 593 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
3130exp32 420 . . . . 5 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))))
3231imp4b 421 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶))
3332pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶)
3433ex 412 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
35 oveq2 7361 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
3634, 35impbid1 225 1 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4286  (class class class)co 7353  ωcom 7806   ·o comu 8393  Ncnpi 10757   ·N cmi 10759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400  df-ni 10785  df-mi 10787
This theorem is referenced by:  enqer  10834  nqereu  10842  adderpqlem  10867  mulerpqlem  10868
  Copyright terms: Public domain W3C validator