MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanpi Structured version   Visualization version   GIF version

Theorem mulcanpi 10906
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanpi ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpi
StepHypRef Expression
1 mulclpi 10899 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
2 eleq1 2821 . . . . . . . . . 10 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴 ·N 𝐵) ∈ N ↔ (𝐴 ·N 𝐶) ∈ N))
31, 2imbitrid 244 . . . . . . . . 9 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → (𝐴 ·N 𝐶) ∈ N))
43imp 406 . . . . . . . 8 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 ·N 𝐶) ∈ N)
5 dmmulpi 10897 . . . . . . . . 9 dom ·N = (N × N)
6 0npi 10888 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 7587 . . . . . . . 8 ((𝐴 ·N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 484 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 mulpiord 10891 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
1110adantr 480 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
12 mulpiord 10891 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
1312adantlr 715 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
1411, 13eqeq12d 2750 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶)))
15 pinn 10884 . . . . . . . . . . . . 13 (𝐴N𝐴 ∈ ω)
16 pinn 10884 . . . . . . . . . . . . 13 (𝐵N𝐵 ∈ ω)
17 pinn 10884 . . . . . . . . . . . . 13 (𝐶N𝐶 ∈ ω)
18 elni2 10883 . . . . . . . . . . . . . . . 16 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1918simprbi 496 . . . . . . . . . . . . . . 15 (𝐴N → ∅ ∈ 𝐴)
20 nnmcan 8640 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
2120biimpd 229 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2219, 21sylan2 593 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2322ex 412 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
2415, 16, 17, 23syl3an 1160 . . . . . . . . . . . 12 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
25243exp 1119 . . . . . . . . . . 11 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
2625com4r 94 . . . . . . . . . 10 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
2726pm2.43i 52 . . . . . . . . 9 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))
2827imp31 417 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
2914, 28sylbid 240 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
309, 29sylan2 593 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
3130exp32 420 . . . . 5 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))))
3231imp4b 421 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶))
3332pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶)
3433ex 412 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
35 oveq2 7407 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
3634, 35impbid1 225 1 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  c0 4306  (class class class)co 7399  ωcom 7855   ·o comu 8472  Ncnpi 10850   ·N cmi 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-oadd 8478  df-omul 8479  df-ni 10878  df-mi 10880
This theorem is referenced by:  enqer  10927  nqereu  10935  adderpqlem  10960  mulerpqlem  10961
  Copyright terms: Public domain W3C validator