MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanpi Structured version   Visualization version   GIF version

Theorem mulcanpi 9924
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanpi ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpi
StepHypRef Expression
1 mulclpi 9917 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
2 eleq1 2838 . . . . . . . . . 10 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴 ·N 𝐵) ∈ N ↔ (𝐴 ·N 𝐶) ∈ N))
31, 2syl5ib 234 . . . . . . . . 9 ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → (𝐴 ·N 𝐶) ∈ N))
43imp 393 . . . . . . . 8 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 ·N 𝐶) ∈ N)
5 dmmulpi 9915 . . . . . . . . 9 dom ·N = (N × N)
6 0npi 9906 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 6967 . . . . . . . 8 ((𝐴 ·N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 471 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 mulpiord 9909 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
1110adantr 466 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
12 mulpiord 9909 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
1312adantlr 694 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
1411, 13eqeq12d 2786 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶)))
15 pinn 9902 . . . . . . . . . . . . 13 (𝐴N𝐴 ∈ ω)
16 pinn 9902 . . . . . . . . . . . . 13 (𝐵N𝐵 ∈ ω)
17 pinn 9902 . . . . . . . . . . . . 13 (𝐶N𝐶 ∈ ω)
18 elni2 9901 . . . . . . . . . . . . . . . 16 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1918simprbi 484 . . . . . . . . . . . . . . 15 (𝐴N → ∅ ∈ 𝐴)
20 nnmcan 7868 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))
2120biimpd 219 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
2219, 21sylan2 580 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
2322ex 397 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))
2415, 16, 17, 23syl3an 1163 . . . . . . . . . . . 12 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))
25243exp 1112 . . . . . . . . . . 11 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))))
2625com4r 94 . . . . . . . . . 10 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))))
2726pm2.43i 52 . . . . . . . . 9 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))))
2827imp31 404 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
2914, 28sylbid 230 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
309, 29sylan2 580 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
3130exp32 407 . . . . 5 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))))
3231imp4b 408 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶))
3332pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) → 𝐵 = 𝐶)
3433ex 397 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
35 oveq2 6801 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
3634, 35impbid1 215 1 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  c0 4063  (class class class)co 6793  ωcom 7212   ·𝑜 comu 7711  Ncnpi 9868   ·N cmi 9870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717  df-omul 7718  df-ni 9896  df-mi 9898
This theorem is referenced by:  enqer  9945  nqereu  9953  adderpqlem  9978  mulerpqlem  9979
  Copyright terms: Public domain W3C validator