![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > niex | Structured version Visualization version GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 8899 | . 2 ⊢ ω ∈ V | |
2 | df-ni 10091 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 3993 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 3886 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 5079 | 1 ⊢ N ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 Vcvv 3410 ∖ cdif 3821 ∅c0 4173 {csn 4436 ωcom 7395 Ncnpi 10063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 ax-un 7278 ax-inf2 8897 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-tr 5028 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-om 7396 df-ni 10091 |
This theorem is referenced by: enqex 10141 nqex 10142 |
Copyright terms: Public domain | W3C validator |