| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > niex | Structured version Visualization version GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9533 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 10763 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 4083 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3976 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 5258 | 1 ⊢ N ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 {csn 4573 ωcom 7796 Ncnpi 10735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 df-ni 10763 |
| This theorem is referenced by: enqex 10813 nqex 10814 |
| Copyright terms: Public domain | W3C validator |