Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > niex | Structured version Visualization version GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9258 | . 2 ⊢ ω ∈ V | |
2 | df-ni 10486 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 4046 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 3935 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 5215 | 1 ⊢ N ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 ∖ cdif 3863 ∅c0 4237 {csn 4541 ωcom 7644 Ncnpi 10458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-om 7645 df-ni 10486 |
This theorem is referenced by: enqex 10536 nqex 10537 |
Copyright terms: Public domain | W3C validator |