MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpi Structured version   Visualization version   GIF version

Theorem addcanpi 10940
Description: Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpi ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcanpi
StepHypRef Expression
1 addclpi 10933 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
2 eleq1 2828 . . . . . . . . . 10 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴 +N 𝐵) ∈ N ↔ (𝐴 +N 𝐶) ∈ N))
31, 2imbitrid 244 . . . . . . . . 9 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → (𝐴 +N 𝐶) ∈ N))
43imp 406 . . . . . . . 8 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 +N 𝐶) ∈ N)
5 dmaddpi 10931 . . . . . . . . 9 dom +N = (N × N)
6 0npi 10923 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 7620 . . . . . . . 8 ((𝐴 +N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 484 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 addpiord 10925 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
1110adantr 480 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
12 addpiord 10925 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1312adantlr 715 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1411, 13eqeq12d 2752 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +o 𝐵) = (𝐴 +o 𝐶)))
15 pinn 10919 . . . . . . . . . 10 (𝐴N𝐴 ∈ ω)
16 pinn 10919 . . . . . . . . . 10 (𝐵N𝐵 ∈ ω)
17 pinn 10919 . . . . . . . . . 10 (𝐶N𝐶 ∈ ω)
18 nnacan 8667 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
1918biimpd 229 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2015, 16, 17, 19syl3an 1160 . . . . . . . . 9 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
21203expa 1118 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2214, 21sylbid 240 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
239, 22sylan2 593 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
2423exp32 420 . . . . 5 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))))
2524imp4b 421 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶))
2625pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶)
2726ex 412 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
28 oveq2 7440 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
2927, 28impbid1 225 1 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7432  ωcom 7888   +o coa 8504  Ncnpi 10885   +N cpli 10886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-oadd 8511  df-ni 10913  df-pli 10914
This theorem is referenced by:  adderpqlem  10995
  Copyright terms: Public domain W3C validator