MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpi Structured version   Visualization version   GIF version

Theorem addcanpi 10513
Description: Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpi ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcanpi
StepHypRef Expression
1 addclpi 10506 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
2 eleq1 2825 . . . . . . . . . 10 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴 +N 𝐵) ∈ N ↔ (𝐴 +N 𝐶) ∈ N))
31, 2syl5ib 247 . . . . . . . . 9 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → (𝐴 +N 𝐶) ∈ N))
43imp 410 . . . . . . . 8 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 +N 𝐶) ∈ N)
5 dmaddpi 10504 . . . . . . . . 9 dom +N = (N × N)
6 0npi 10496 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 7394 . . . . . . . 8 ((𝐴 +N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 488 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 addpiord 10498 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
1110adantr 484 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
12 addpiord 10498 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1312adantlr 715 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1411, 13eqeq12d 2753 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +o 𝐵) = (𝐴 +o 𝐶)))
15 pinn 10492 . . . . . . . . . 10 (𝐴N𝐴 ∈ ω)
16 pinn 10492 . . . . . . . . . 10 (𝐵N𝐵 ∈ ω)
17 pinn 10492 . . . . . . . . . 10 (𝐶N𝐶 ∈ ω)
18 nnacan 8356 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
1918biimpd 232 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2015, 16, 17, 19syl3an 1162 . . . . . . . . 9 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
21203expa 1120 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2214, 21sylbid 243 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
239, 22sylan2 596 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
2423exp32 424 . . . . 5 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))))
2524imp4b 425 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶))
2625pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶)
2726ex 416 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
28 oveq2 7221 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
2927, 28impbid1 228 1 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  (class class class)co 7213  ωcom 7644   +o coa 8199  Ncnpi 10458   +N cpli 10459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-oadd 8206  df-ni 10486  df-pli 10487
This theorem is referenced by:  adderpqlem  10568
  Copyright terms: Public domain W3C validator