MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpi Structured version   Visualization version   GIF version

Theorem addcanpi 10174
Description: Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpi ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcanpi
StepHypRef Expression
1 addclpi 10167 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
2 eleq1 2872 . . . . . . . . . 10 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴 +N 𝐵) ∈ N ↔ (𝐴 +N 𝐶) ∈ N))
31, 2syl5ib 245 . . . . . . . . 9 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → (𝐴 +N 𝐶) ∈ N))
43imp 407 . . . . . . . 8 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 +N 𝐶) ∈ N)
5 dmaddpi 10165 . . . . . . . . 9 dom +N = (N × N)
6 0npi 10157 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 7197 . . . . . . . 8 ((𝐴 +N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 485 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 addpiord 10159 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
1110adantr 481 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
12 addpiord 10159 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1312adantlr 711 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐶) = (𝐴 +o 𝐶))
1411, 13eqeq12d 2812 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +o 𝐵) = (𝐴 +o 𝐶)))
15 pinn 10153 . . . . . . . . . 10 (𝐴N𝐴 ∈ ω)
16 pinn 10153 . . . . . . . . . 10 (𝐵N𝐵 ∈ ω)
17 pinn 10153 . . . . . . . . . 10 (𝐶N𝐶 ∈ ω)
18 nnacan 8111 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
1918biimpd 230 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2015, 16, 17, 19syl3an 1153 . . . . . . . . 9 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
21203expa 1111 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) → 𝐵 = 𝐶))
2214, 21sylbid 241 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
239, 22sylan2 592 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
2423exp32 421 . . . . 5 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))))
2524imp4b 422 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶))
2625pm2.43i 52 . . 3 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶)
2726ex 413 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
28 oveq2 7031 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
2927, 28impbid1 226 1 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  (class class class)co 7023  ωcom 7443   +o coa 7957  Ncnpi 10119   +N cpli 10120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-oadd 7964  df-ni 10147  df-pli 10148
This theorem is referenced by:  adderpqlem  10229
  Copyright terms: Public domain W3C validator