MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnidpi Structured version   Visualization version   GIF version

Theorem addnidpi 10932
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addnidpi (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴)

Proof of Theorem addnidpi
StepHypRef Expression
1 pinn 10909 . . . . 5 (𝐴N𝐴 ∈ ω)
2 elni2 10908 . . . . . 6 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
3 nnaordi 8645 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
4 nna0 8631 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
54eleq1d 2814 . . . . . . . . . . 11 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵)))
6 nnord 7884 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → Ord 𝐴)
7 ordirr 6392 . . . . . . . . . . . . . 14 (Ord 𝐴 → ¬ 𝐴𝐴)
86, 7syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ω → ¬ 𝐴𝐴)
9 eleq2 2818 . . . . . . . . . . . . . 14 ((𝐴 +o 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +o 𝐵) ↔ 𝐴𝐴))
109notbid 317 . . . . . . . . . . . . 13 ((𝐴 +o 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +o 𝐵) ↔ ¬ 𝐴𝐴))
118, 10syl5ibrcom 246 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝐴 +o 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +o 𝐵)))
1211con2d 134 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
135, 12sylbid 239 . . . . . . . . . 10 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
1413adantl 480 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
153, 14syld 47 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴))
1615expcom 412 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴)))
1716imp32 417 . . . . . 6 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +o 𝐵) = 𝐴)
182, 17sylan2b 592 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
191, 18sylan 578 . . . 4 ((𝐴N𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
20 addpiord 10915 . . . . 5 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
2120eqeq1d 2730 . . . 4 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +o 𝐵) = 𝐴))
2219, 21mtbird 324 . . 3 ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
2322a1d 25 . 2 ((𝐴N𝐵N) → (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴))
24 dmaddpi 10921 . . . . . 6 dom +N = (N × N)
2524ndmov 7611 . . . . 5 (¬ (𝐴N𝐵N) → (𝐴 +N 𝐵) = ∅)
2625eqeq1d 2730 . . . 4 (¬ (𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ ∅ = 𝐴))
27 0npi 10913 . . . . 5 ¬ ∅ ∈ N
28 eleq1 2817 . . . . 5 (∅ = 𝐴 → (∅ ∈ N𝐴N))
2927, 28mtbii 325 . . . 4 (∅ = 𝐴 → ¬ 𝐴N)
3026, 29biimtrdi 252 . . 3 (¬ (𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 → ¬ 𝐴N))
3130con2d 134 . 2 (¬ (𝐴N𝐵N) → (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴))
3223, 31pm2.61i 182 1 (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  c0 4326  Ord word 6373  (class class class)co 7426  ωcom 7876   +o coa 8490  Ncnpi 10875   +N cpli 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-oadd 8497  df-ni 10903  df-pli 10904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator