MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnidpi Structured version   Visualization version   GIF version

Theorem addnidpi 10325
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addnidpi (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴)

Proof of Theorem addnidpi
StepHypRef Expression
1 pinn 10302 . . . . 5 (𝐴N𝐴 ∈ ω)
2 elni2 10301 . . . . . 6 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
3 nnaordi 8246 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
4 nna0 8232 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
54eleq1d 2899 . . . . . . . . . . 11 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵)))
6 nnord 7590 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → Ord 𝐴)
7 ordirr 6211 . . . . . . . . . . . . . 14 (Ord 𝐴 → ¬ 𝐴𝐴)
86, 7syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ω → ¬ 𝐴𝐴)
9 eleq2 2903 . . . . . . . . . . . . . 14 ((𝐴 +o 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +o 𝐵) ↔ 𝐴𝐴))
109notbid 320 . . . . . . . . . . . . 13 ((𝐴 +o 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +o 𝐵) ↔ ¬ 𝐴𝐴))
118, 10syl5ibrcom 249 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝐴 +o 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +o 𝐵)))
1211con2d 136 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
135, 12sylbid 242 . . . . . . . . . 10 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
1413adantl 484 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
153, 14syld 47 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴))
1615expcom 416 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴)))
1716imp32 421 . . . . . 6 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +o 𝐵) = 𝐴)
182, 17sylan2b 595 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
191, 18sylan 582 . . . 4 ((𝐴N𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
20 addpiord 10308 . . . . 5 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
2120eqeq1d 2825 . . . 4 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +o 𝐵) = 𝐴))
2219, 21mtbird 327 . . 3 ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
2322a1d 25 . 2 ((𝐴N𝐵N) → (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴))
24 dmaddpi 10314 . . . . . 6 dom +N = (N × N)
2524ndmov 7334 . . . . 5 (¬ (𝐴N𝐵N) → (𝐴 +N 𝐵) = ∅)
2625eqeq1d 2825 . . . 4 (¬ (𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ ∅ = 𝐴))
27 0npi 10306 . . . . 5 ¬ ∅ ∈ N
28 eleq1 2902 . . . . 5 (∅ = 𝐴 → (∅ ∈ N𝐴N))
2927, 28mtbii 328 . . . 4 (∅ = 𝐴 → ¬ 𝐴N)
3026, 29syl6bi 255 . . 3 (¬ (𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 → ¬ 𝐴N))
3130con2d 136 . 2 (¬ (𝐴N𝐵N) → (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴))
3223, 31pm2.61i 184 1 (𝐴N → ¬ (𝐴 +N 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  c0 4293  Ord word 6192  (class class class)co 7158  ωcom 7582   +o coa 8101  Ncnpi 10268   +N cpli 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-ni 10296  df-pli 10297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator