MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspi Structured version   Visualization version   GIF version

Theorem addasspi 10886
Description: Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addasspi ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))

Proof of Theorem addasspi
StepHypRef Expression
1 pinn 10869 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10869 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 10869 . . . 4 (𝐶N𝐶 ∈ ω)
4 nnaass 8617 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
51, 2, 3, 4syl3an 1157 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
6 addclpi 10883 . . . . . 6 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
7 addpiord 10875 . . . . . 6 (((𝐴 +N 𝐵) ∈ N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶))
86, 7sylan 579 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶))
9 addpiord 10875 . . . . . . 7 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
109oveq1d 7416 . . . . . 6 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
1110adantr 480 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
128, 11eqtrd 2764 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
13123impa 1107 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
14 addclpi 10883 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
15 addpiord 10875 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶)))
1614, 15sylan2 592 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶)))
17 addpiord 10875 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
1817oveq2d 7417 . . . . . 6 ((𝐵N𝐶N) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
1918adantl 481 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
2016, 19eqtrd 2764 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
21203impb 1112 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
225, 13, 213eqtr4d 2774 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
23 dmaddpi 10881 . . 3 dom +N = (N × N)
24 0npi 10873 . . 3 ¬ ∅ ∈ N
2523, 24ndmovass 7588 . 2 (¬ (𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
2622, 25pm2.61i 182 1 ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1084   = wceq 1533  wcel 2098  (class class class)co 7401  ωcom 7848   +o coa 8458  Ncnpi 10835   +N cpli 10836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-oadd 8465  df-ni 10863  df-pli 10864
This theorem is referenced by:  addassnq  10949
  Copyright terms: Public domain W3C validator