Proof of Theorem addasspi
| Step | Hyp | Ref
| Expression |
| 1 | | pinn 10900 |
. . . 4
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
| 2 | | pinn 10900 |
. . . 4
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 3 | | pinn 10900 |
. . . 4
⊢ (𝐶 ∈ N →
𝐶 ∈
ω) |
| 4 | | nnaass 8642 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) |
| 5 | 1, 2, 3, 4 | syl3an 1160 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → ((𝐴
+o 𝐵)
+o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) |
| 6 | | addclpi 10914 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
+N 𝐵) ∈ N) |
| 7 | | addpiord 10906 |
. . . . . 6
⊢ (((𝐴 +N
𝐵) ∈ N
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) |
| 8 | 6, 7 | sylan 580 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) |
| 9 | | addpiord 10906 |
. . . . . . 7
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
+N 𝐵) = (𝐴 +o 𝐵)) |
| 10 | 9 | oveq1d 7428 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ ((𝐴
+N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 12 | 8, 11 | eqtrd 2769 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 13 | 12 | 3impa 1109 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 14 | | addclpi 10914 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) ∈ N) |
| 15 | | addpiord 10906 |
. . . . . 6
⊢ ((𝐴 ∈ N ∧
(𝐵
+N 𝐶) ∈ N) → (𝐴 +N
(𝐵
+N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) |
| 16 | 14, 15 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
+N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) |
| 17 | | addpiord 10906 |
. . . . . . 7
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐵
+N 𝐶) = (𝐵 +o 𝐶)) |
| 18 | 17 | oveq2d 7429 |
. . . . . 6
⊢ ((𝐵 ∈ N ∧
𝐶 ∈ N)
→ (𝐴 +o
(𝐵
+N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 19 | 18 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
+o (𝐵
+N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 20 | 16, 19 | eqtrd 2769 |
. . . 4
⊢ ((𝐴 ∈ N ∧
(𝐵 ∈ N
∧ 𝐶 ∈
N)) → (𝐴
+N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 21 | 20 | 3impb 1114 |
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
+N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 22 | 5, 13, 21 | 3eqtr4d 2779 |
. 2
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → ((𝐴
+N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N
𝐶))) |
| 23 | | dmaddpi 10912 |
. . 3
⊢ dom
+N = (N ×
N) |
| 24 | | 0npi 10904 |
. . 3
⊢ ¬
∅ ∈ N |
| 25 | 23, 24 | ndmovass 7603 |
. 2
⊢ (¬
(𝐴 ∈ N
∧ 𝐵 ∈
N ∧ 𝐶
∈ N) → ((𝐴 +N 𝐵) +N
𝐶) = (𝐴 +N (𝐵 +N
𝐶))) |
| 26 | 22, 25 | pm2.61i 182 |
1
⊢ ((𝐴 +N
𝐵)
+N 𝐶) = (𝐴 +N (𝐵 +N
𝐶)) |