MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspi Structured version   Visualization version   GIF version

Theorem mulasspi 10780
Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspi ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))

Proof of Theorem mulasspi
StepHypRef Expression
1 pinn 10761 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10761 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 10761 . . . 4 (𝐶N𝐶 ∈ ω)
4 nnmass 8534 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
51, 2, 3, 4syl3an 1160 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
6 mulclpi 10776 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
7 mulpiord 10768 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
86, 7sylan 580 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
9 mulpiord 10768 . . . . . . 7 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
109oveq1d 7356 . . . . . 6 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
1110adantr 480 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
128, 11eqtrd 2765 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
13123impa 1109 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 mulclpi 10776 . . . . . 6 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
15 mulpiord 10768 . . . . . 6 ((𝐴N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
1614, 15sylan2 593 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
17 mulpiord 10768 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) = (𝐵 ·o 𝐶))
1817oveq2d 7357 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1918adantl 481 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
2016, 19eqtrd 2765 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
21203impb 1114 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
225, 13, 213eqtr4d 2775 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
23 dmmulpi 10774 . . 3 dom ·N = (N × N)
24 0npi 10765 . . 3 ¬ ∅ ∈ N
2523, 24ndmovass 7529 . 2 (¬ (𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
2622, 25pm2.61i 182 1 ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2110  (class class class)co 7341  ωcom 7791   ·o comu 8378  Ncnpi 10727   ·N cmi 10729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384  df-omul 8385  df-ni 10755  df-mi 10757
This theorem is referenced by:  enqer  10804  adderpqlem  10837  mulerpqlem  10838  addassnq  10841  mulassnq  10842  mulcanenq  10843  distrnq  10844  ltsonq  10852  lterpq  10853  ltanq  10854  ltmnq  10855  ltexnq  10858
  Copyright terms: Public domain W3C validator