| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulasspi | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulasspi | ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10761 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10761 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | pinn 10761 | . . . 4 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
| 4 | nnmass 8534 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 6 | mulclpi 10776 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
| 7 | mulpiord 10768 | . . . . . 6 ⊢ (((𝐴 ·N 𝐵) ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶)) | |
| 8 | 6, 7 | sylan 580 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶)) |
| 9 | mulpiord 10768 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 10 | 9 | oveq1d 7356 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 12 | 8, 11 | eqtrd 2765 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 13 | 12 | 3impa 1109 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 14 | mulclpi 10776 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) ∈ N) | |
| 15 | mulpiord 10768 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶))) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶))) |
| 17 | mulpiord 10768 | . . . . . . 7 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) = (𝐵 ·o 𝐶)) | |
| 18 | 17 | oveq2d 7357 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 20 | 16, 19 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 21 | 20 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 22 | 5, 13, 21 | 3eqtr4d 2775 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
| 23 | dmmulpi 10774 | . . 3 ⊢ dom ·N = (N × N) | |
| 24 | 0npi 10765 | . . 3 ⊢ ¬ ∅ ∈ N | |
| 25 | 23, 24 | ndmovass 7529 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
| 26 | 22, 25 | pm2.61i 182 | 1 ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ωcom 7791 ·o comu 8378 Ncnpi 10727 ·N cmi 10729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-oadd 8384 df-omul 8385 df-ni 10755 df-mi 10757 |
| This theorem is referenced by: enqer 10804 adderpqlem 10837 mulerpqlem 10838 addassnq 10841 mulassnq 10842 mulcanenq 10843 distrnq 10844 ltsonq 10852 lterpq 10853 ltanq 10854 ltmnq 10855 ltexnq 10858 |
| Copyright terms: Public domain | W3C validator |