| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulasspi | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulasspi | ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10837 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10837 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | pinn 10837 | . . . 4 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
| 4 | nnmass 8590 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 6 | mulclpi 10852 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
| 7 | mulpiord 10844 | . . . . . 6 ⊢ (((𝐴 ·N 𝐵) ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶)) | |
| 8 | 6, 7 | sylan 580 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶)) |
| 9 | mulpiord 10844 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 10 | 9 | oveq1d 7404 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 12 | 8, 11 | eqtrd 2765 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 13 | 12 | 3impa 1109 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
| 14 | mulclpi 10852 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) ∈ N) | |
| 15 | mulpiord 10844 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶))) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶))) |
| 17 | mulpiord 10844 | . . . . . . 7 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) = (𝐵 ·o 𝐶)) | |
| 18 | 17 | oveq2d 7405 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 20 | 16, 19 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 21 | 20 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| 22 | 5, 13, 21 | 3eqtr4d 2775 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
| 23 | dmmulpi 10850 | . . 3 ⊢ dom ·N = (N × N) | |
| 24 | 0npi 10841 | . . 3 ⊢ ¬ ∅ ∈ N | |
| 25 | 23, 24 | ndmovass 7579 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
| 26 | 22, 25 | pm2.61i 182 | 1 ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7389 ωcom 7844 ·o comu 8434 Ncnpi 10803 ·N cmi 10805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-oadd 8440 df-omul 8441 df-ni 10831 df-mi 10833 |
| This theorem is referenced by: enqer 10880 adderpqlem 10913 mulerpqlem 10914 addassnq 10917 mulassnq 10918 mulcanenq 10919 distrnq 10920 ltsonq 10928 lterpq 10929 ltanq 10930 ltmnq 10931 ltexnq 10934 |
| Copyright terms: Public domain | W3C validator |