MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspi Structured version   Visualization version   GIF version

Theorem mulasspi 10007
Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspi ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))

Proof of Theorem mulasspi
StepHypRef Expression
1 pinn 9988 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 9988 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 9988 . . . 4 (𝐶N𝐶 ∈ ω)
4 nnmass 7944 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
51, 2, 3, 4syl3an 1200 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
6 mulclpi 10003 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
7 mulpiord 9995 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·𝑜 𝐶))
86, 7sylan 576 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·𝑜 𝐶))
9 mulpiord 9995 . . . . . . 7 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
109oveq1d 6893 . . . . . 6 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
1110adantr 473 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
128, 11eqtrd 2833 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
13123impa 1137 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
14 mulclpi 10003 . . . . . 6 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
15 mulpiord 9995 . . . . . 6 ((𝐴N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·N 𝐶)))
1614, 15sylan2 587 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·N 𝐶)))
17 mulpiord 9995 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) = (𝐵 ·𝑜 𝐶))
1817oveq2d 6894 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·𝑜 (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
1918adantl 474 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·𝑜 (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
2016, 19eqtrd 2833 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
21203impb 1144 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
225, 13, 213eqtr4d 2843 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
23 dmmulpi 10001 . . 3 dom ·N = (N × N)
24 0npi 9992 . . 3 ¬ ∅ ∈ N
2523, 24ndmovass 7056 . 2 (¬ (𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
2622, 25pm2.61i 177 1 ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 385  w3a 1108   = wceq 1653  wcel 2157  (class class class)co 6878  ωcom 7299   ·𝑜 comu 7797  Ncnpi 9954   ·N cmi 9956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-oadd 7803  df-omul 7804  df-ni 9982  df-mi 9984
This theorem is referenced by:  enqer  10031  adderpqlem  10064  mulerpqlem  10065  addassnq  10068  mulassnq  10069  mulcanenq  10070  distrnq  10071  ltsonq  10079  lterpq  10080  ltanq  10081  ltmnq  10082  ltexnq  10085
  Copyright terms: Public domain W3C validator