MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspi Structured version   Visualization version   GIF version

Theorem mulasspi 10968
Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspi ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))

Proof of Theorem mulasspi
StepHypRef Expression
1 pinn 10949 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10949 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 10949 . . . 4 (𝐶N𝐶 ∈ ω)
4 nnmass 8682 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
51, 2, 3, 4syl3an 1160 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
6 mulclpi 10964 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
7 mulpiord 10956 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
86, 7sylan 579 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
9 mulpiord 10956 . . . . . . 7 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
109oveq1d 7465 . . . . . 6 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
1110adantr 480 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
128, 11eqtrd 2780 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
13123impa 1110 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 mulclpi 10964 . . . . . 6 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
15 mulpiord 10956 . . . . . 6 ((𝐴N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
1614, 15sylan2 592 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
17 mulpiord 10956 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) = (𝐵 ·o 𝐶))
1817oveq2d 7466 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1918adantl 481 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
2016, 19eqtrd 2780 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
21203impb 1115 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
225, 13, 213eqtr4d 2790 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
23 dmmulpi 10962 . . 3 dom ·N = (N × N)
24 0npi 10953 . . 3 ¬ ∅ ∈ N
2523, 24ndmovass 7640 . 2 (¬ (𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
2622, 25pm2.61i 182 1 ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7450  ωcom 7905   ·o comu 8522  Ncnpi 10915   ·N cmi 10917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-oadd 8528  df-omul 8529  df-ni 10943  df-mi 10945
This theorem is referenced by:  enqer  10992  adderpqlem  11025  mulerpqlem  11026  addassnq  11029  mulassnq  11030  mulcanenq  11031  distrnq  11032  ltsonq  11040  lterpq  11041  ltanq  11042  ltmnq  11043  ltexnq  11046
  Copyright terms: Public domain W3C validator