Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovncvrrp Structured version   Visualization version   GIF version

Theorem ovncvrrp 42723
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovncvrrp.x (𝜑𝑋 ∈ Fin)
ovncvrrp.n0 (𝜑𝑋 ≠ ∅)
ovncvrrp.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovncvrrp.e (𝜑𝐸 ∈ ℝ+)
ovncvrrp.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovncvrrp.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovncvrrp.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovncvrrp (𝜑 → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖   𝐴,𝑙,𝑎,𝑖   𝐶,𝑒,𝑖   𝑒,𝐸,𝑖   𝐿,𝑎,𝑒   𝑋,𝑎,𝑒,𝑖,𝑗   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑘,𝑎   𝑗,𝑙,𝑘   𝜑,𝑎,𝑒,𝑖,𝑗   𝜑,𝑘
Allowed substitution hints:   𝜑(,𝑙)   𝐴(,𝑗,𝑘)   𝐶(,𝑗,𝑘,𝑎,𝑙)   𝐷(𝑒,,𝑖,𝑗,𝑘,𝑎,𝑙)   𝐸(,𝑗,𝑘,𝑎,𝑙)   𝐿(,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovncvrrp
Dummy variables 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovncvrrp.x . . . 4 (𝜑𝑋 ∈ Fin)
2 ovncvrrp.n0 . . . 4 (𝜑𝑋 ≠ ∅)
3 ovncvrrp.a . . . 4 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
4 ovncvrrp.e . . . 4 (𝜑𝐸 ∈ ℝ+)
5 eqid 2818 . . . 4 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
61, 2, 3, 4, 5ovnlerp 42721 . . 3 (𝜑 → ∃𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
7 simp1 1128 . . . . . 6 ((𝜑𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ∧ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → 𝜑)
8 simp3 1130 . . . . . 6 ((𝜑𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ∧ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
9 rabid 3376 . . . . . . . . . 10 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
109biimpi 217 . . . . . . . . 9 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} → (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
1110simprd 496 . . . . . . . 8 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
1211adantr 481 . . . . . . 7 ((𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ∧ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
13123adant1 1122 . . . . . 6 ((𝜑𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ∧ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
14 nfv 1906 . . . . . . . 8 𝑖(𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
15 nfe1 2145 . . . . . . . 8 𝑖𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
16 simp1l 1189 . . . . . . . . . . . 12 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝜑)
17 simp2 1129 . . . . . . . . . . . 12 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
18 simp3l 1193 . . . . . . . . . . . 12 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
19 id 22 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
20 fveq1 6662 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑙𝑗) = (𝑖𝑗))
2120coeq2d 5726 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ([,) ∘ (𝑙𝑗)) = ([,) ∘ (𝑖𝑗)))
2221fveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (([,) ∘ (𝑙𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
2322ixpeq2dv 8465 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
2423iuneq2d 4939 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
2524sseq2d 3996 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑖 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
2625elrab 3677 . . . . . . . . . . . . . . 15 (𝑖 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ↔ (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
2719, 26sylibr 235 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝑖 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
28273adant1 1122 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝑖 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
29 ovncvrrp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
30 sseq1 3989 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐴 → (𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
3130rabbidv 3478 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
32 ovexd 7180 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
3332, 3ssexd 5219 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
34 elpwg 4541 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
363, 35mpbird 258 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
37 ovex 7178 . . . . . . . . . . . . . . . . . 18 (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈ V
3837rabex 5226 . . . . . . . . . . . . . . . . 17 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V
3938a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V)
4029, 31, 36, 39fvmptd3 6783 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4140eqcomd 2824 . . . . . . . . . . . . . 14 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = (𝐶𝐴))
42413ad2ant1 1125 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = (𝐶𝐴))
4328, 42eleqtrd 2912 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝑖 ∈ (𝐶𝐴))
4416, 17, 18, 43syl3anc 1363 . . . . . . . . . . 11 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (𝐶𝐴))
45 ovncvrrp.l . . . . . . . . . . . . . . . . . . . 20 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
46 coeq2 5722 . . . . . . . . . . . . . . . . . . . . . . 23 ( = (𝑖𝑗) → ([,) ∘ ) = ([,) ∘ (𝑖𝑗)))
4746fveq1d 6665 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑖𝑗) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
4847fveq2d 6667 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑖𝑗) → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
4948prodeq2ad 41749 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑖𝑗) → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
50 elmapi 8417 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5150adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
52 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5351, 52ffvelrnd 6844 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑖𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
54 prodex 15249 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) ∈ V)
5645, 49, 53, 55fvmptd3 6783 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝑖𝑗)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
5756mpteq2dva 5152 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
5857fveq2d 6667 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
5958adantr 481 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
60 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
6160eqcomd 2824 . . . . . . . . . . . . . . . . 17 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = 𝑧)
6261adantl 482 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = 𝑧)
6359, 62eqtrd 2853 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = 𝑧)
64633adant1 1122 . . . . . . . . . . . . . 14 ((𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = 𝑧)
65 simp1 1128 . . . . . . . . . . . . . 14 ((𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
6664, 65eqbrtrd 5079 . . . . . . . . . . . . 13 ((𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
67663adant1l 1168 . . . . . . . . . . . 12 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
68673adant3l 1172 . . . . . . . . . . 11 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
6944, 68jca 512 . . . . . . . . . 10 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
706919.8ad 2171 . . . . . . . . 9 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
71703exp 1111 . . . . . . . 8 ((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))))
7214, 15, 71rexlimd 3314 . . . . . . 7 ((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
7372imp 407 . . . . . 6 (((𝜑𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
747, 8, 13, 73syl21anc 833 . . . . 5 ((𝜑𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ∧ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
75743exp 1111 . . . 4 (𝜑 → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} → (𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))))
7675rexlimdv 3280 . . 3 (𝜑 → (∃𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
776, 76mpd 15 . 2 (𝜑 → ∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
78 rabid 3376 . . . . . . . 8 (𝑖 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
7978bicomi 225 . . . . . . 7 ((𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) ↔ 𝑖 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
8079biimpi 217 . . . . . 6 ((𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → 𝑖 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
8180adantl 482 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → 𝑖 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
82 ovncvrrp.d . . . . . . . . 9 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
83 nfcv 2974 . . . . . . . . . 10 𝑏(𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
84 nfcv 2974 . . . . . . . . . . 11 𝑎+
85 nfv 1906 . . . . . . . . . . . 12 𝑎^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)
86 nfmpt1 5155 . . . . . . . . . . . . . 14 𝑎(𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
8729, 86nfcxfr 2972 . . . . . . . . . . . . 13 𝑎𝐶
88 nfcv 2974 . . . . . . . . . . . . 13 𝑎𝑏
8987, 88nffv 6673 . . . . . . . . . . . 12 𝑎(𝐶𝑏)
9085, 89nfrabw 3383 . . . . . . . . . . 11 𝑎{𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)}
9184, 90nfmpt 5154 . . . . . . . . . 10 𝑎(𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)})
92 fveq2 6663 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝐶𝑎) = (𝐶𝑏))
9392eleq2d 2895 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝑖 ∈ (𝐶𝑎) ↔ 𝑖 ∈ (𝐶𝑏)))
94 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝑏))
9594oveq1d 7160 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑒))
9695breq2d 5069 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)))
9793, 96anbi12d 630 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑖 ∈ (𝐶𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)) ↔ (𝑖 ∈ (𝐶𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒))))
9897rabbidva2 3474 . . . . . . . . . . 11 (𝑎 = 𝑏 → {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)} = {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)})
9998mpteq2dv 5153 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)}))
10083, 91, 99cbvmpt 5158 . . . . . . . . 9 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)}))
10182, 100eqtri 2841 . . . . . . . 8 𝐷 = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)}))
102 fveq2 6663 . . . . . . . . . . . 12 (𝑏 = 𝐴 → (𝐶𝑏) = (𝐶𝐴))
103102eleq2d 2895 . . . . . . . . . . 11 (𝑏 = 𝐴 → (𝑖 ∈ (𝐶𝑏) ↔ 𝑖 ∈ (𝐶𝐴)))
104 fveq2 6663 . . . . . . . . . . . . 13 (𝑏 = 𝐴 → ((voln*‘𝑋)‘𝑏) = ((voln*‘𝑋)‘𝐴))
105104oveq1d 7160 . . . . . . . . . . . 12 (𝑏 = 𝐴 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
106105breq2d 5069 . . . . . . . . . . 11 (𝑏 = 𝐴 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
107103, 106anbi12d 630 . . . . . . . . . 10 (𝑏 = 𝐴 → ((𝑖 ∈ (𝐶𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)) ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))))
108107rabbidva2 3474 . . . . . . . . 9 (𝑏 = 𝐴 → {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)})
109108mpteq2dv 5153 . . . . . . . 8 (𝑏 = 𝐴 → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑒)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)}))
11036adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → 𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
111 rpex 41490 . . . . . . . . . 10 + ∈ V
112111mptex 6977 . . . . . . . . 9 (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)}) ∈ V
113112a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)}) ∈ V)
114101, 109, 110, 113fvmptd3 6783 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → (𝐷𝐴) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)}))
115 oveq2 7153 . . . . . . . . . 10 (𝑒 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
116115breq2d 5069 . . . . . . . . 9 (𝑒 = 𝐸 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
117116rabbidv 3478 . . . . . . . 8 (𝑒 = 𝐸 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
118117adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) ∧ 𝑒 = 𝐸) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
1194adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → 𝐸 ∈ ℝ+)
120 fvex 6676 . . . . . . . . 9 (𝐶𝐴) ∈ V
121120rabex 5226 . . . . . . . 8 {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V
122121a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V)
123114, 118, 119, 122fvmptd 6767 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → ((𝐷𝐴)‘𝐸) = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
124123eqcomd 2824 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} = ((𝐷𝐴)‘𝐸))
12581, 124eleqtrd 2912 . . . 4 ((𝜑 ∧ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) → 𝑖 ∈ ((𝐷𝐴)‘𝐸))
126125ex 413 . . 3 (𝜑 → ((𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → 𝑖 ∈ ((𝐷𝐴)‘𝐸)))
127126eximdv 1909 . 2 (𝜑 → (∃𝑖(𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝐸)))
12877, 127mpd 15 1 (𝜑 → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  {crab 3139  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535   ciun 4910   class class class wbr 5057  cmpt 5137   × cxp 5546  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  Xcixp 8449  Fincfn 8497  cr 10524  *cxr 10662  cle 10664  cn 11626  +crp 12377   +𝑒 cxad 12493  [,)cico 12728  cprod 15247  volcvol 23991  Σ^csumge0 42521  voln*covoln 42695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-prod 15248  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-rest 16684  df-0g 16703  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-bases 21482  df-cmp 21923  df-ovol 23992  df-vol 23993  df-sumge0 42522  df-ovoln 42696
This theorem is referenced by:  ovnsubaddlem2  42730  hspmbllem3  42787
  Copyright terms: Public domain W3C validator