MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4a Structured version   Visualization version   GIF version

Theorem pwfseqlem4a 10348
Description: Lemma for pwfseqlem4 10349. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem4a ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑠,𝑎,𝐹   𝑤,𝐺   𝑤,𝐾   𝑟,𝑎,𝑥,𝑧,𝐻,𝑠   𝑛,𝑎,𝜑,𝑠,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑎,𝑛,𝑟,𝑠,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑠,𝑟,𝑎)

Proof of Theorem pwfseqlem4a
StepHypRef Expression
1 isfinite 9340 . . 3 (𝑎 ∈ Fin ↔ 𝑎 ≺ ω)
2 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ Fin) → 𝑎 ∈ Fin)
3 vex 3426 . . . . . . 7 𝑠 ∈ V
4 pwfseqlem4.g . . . . . . . 8 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
5 pwfseqlem4.x . . . . . . . 8 (𝜑𝑋𝐴)
6 pwfseqlem4.h . . . . . . . 8 (𝜑𝐻:ω–1-1-onto𝑋)
7 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
8 pwfseqlem4.k . . . . . . . 8 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
9 pwfseqlem4.d . . . . . . . 8 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
10 pwfseqlem4.f . . . . . . . 8 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
114, 5, 6, 7, 8, 9, 10pwfseqlem2 10346 . . . . . . 7 ((𝑎 ∈ Fin ∧ 𝑠 ∈ V) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
122, 3, 11sylancl 585 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
13 f1of 6700 . . . . . . . . 9 (𝐻:ω–1-1-onto𝑋𝐻:ω⟶𝑋)
146, 13syl 17 . . . . . . . 8 (𝜑𝐻:ω⟶𝑋)
1514, 5fssd 6602 . . . . . . 7 (𝜑𝐻:ω⟶𝐴)
16 ficardom 9650 . . . . . . 7 (𝑎 ∈ Fin → (card‘𝑎) ∈ ω)
17 ffvelrn 6941 . . . . . . 7 ((𝐻:ω⟶𝐴 ∧ (card‘𝑎) ∈ ω) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1815, 16, 17syl2an 595 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1912, 18eqeltrd 2839 . . . . 5 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) ∈ 𝐴)
2019ex 412 . . . 4 (𝜑 → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
2120adantr 480 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
221, 21syl5bir 242 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
23 omelon 9334 . . . . 5 ω ∈ On
24 onenon 9638 . . . . 5 (ω ∈ On → ω ∈ dom card)
2523, 24ax-mp 5 . . . 4 ω ∈ dom card
26 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎)
272619.8ad 2177 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎)
28 ween 9722 . . . . 5 (𝑎 ∈ dom card ↔ ∃𝑠 𝑠 We 𝑎)
2927, 28sylibr 233 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card)
30 domtri2 9678 . . . 4 ((ω ∈ dom card ∧ 𝑎 ∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
3125, 29, 30sylancr 586 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
32 nfv 1918 . . . . . . 7 𝑟(𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))
33 nfcv 2906 . . . . . . . . 9 𝑟𝑎
34 nfmpo2 7334 . . . . . . . . . 10 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
3510, 34nfcxfr 2904 . . . . . . . . 9 𝑟𝐹
36 nfcv 2906 . . . . . . . . 9 𝑟𝑠
3733, 35, 36nfov 7285 . . . . . . . 8 𝑟(𝑎𝐹𝑠)
3837nfel1 2922 . . . . . . 7 𝑟(𝑎𝐹𝑠) ∈ (𝐴𝑎)
3932, 38nfim 1900 . . . . . 6 𝑟((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
40 sseq1 3942 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
41 weeq1 5568 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
4240, 413anbi23d 1437 . . . . . . . . 9 (𝑟 = 𝑠 → ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)))
4342anbi1d 629 . . . . . . . 8 (𝑟 = 𝑠 → (((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))
4443anbi2d 628 . . . . . . 7 (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))))
45 oveq2 7263 . . . . . . . 8 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
4645eleq1d 2823 . . . . . . 7 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴𝑎)))
4744, 46imbi12d 344 . . . . . 6 (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))))
48 nfv 1918 . . . . . . . 8 𝑥(𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))
49 nfcv 2906 . . . . . . . . . 10 𝑥𝑎
50 nfmpo1 7333 . . . . . . . . . . 11 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
5110, 50nfcxfr 2904 . . . . . . . . . 10 𝑥𝐹
52 nfcv 2906 . . . . . . . . . 10 𝑥𝑟
5349, 51, 52nfov 7285 . . . . . . . . 9 𝑥(𝑎𝐹𝑟)
5453nfel1 2922 . . . . . . . 8 𝑥(𝑎𝐹𝑟) ∈ (𝐴𝑎)
5548, 54nfim 1900 . . . . . . 7 𝑥((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
56 sseq1 3942 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
57 xpeq12 5605 . . . . . . . . . . . . . 14 ((𝑥 = 𝑎𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5857anidms 566 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5958sseq2d 3949 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎)))
60 weeq2 5569 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
6156, 59, 603anbi123d 1434 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎)))
62 breq2 5074 . . . . . . . . . . 11 (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎))
6361, 62anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑎 → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
647, 63syl5bb 282 . . . . . . . . 9 (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
6564anbi2d 628 . . . . . . . 8 (𝑥 = 𝑎 → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))))
66 oveq1 7262 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
67 difeq2 4047 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
6866, 67eleq12d 2833 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴𝑎)))
6965, 68imbi12d 344 . . . . . . 7 (𝑥 = 𝑎 → (((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))))
704, 5, 6, 7, 8, 9, 10pwfseqlem3 10347 . . . . . . 7 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
7155, 69, 70chvarfv 2236 . . . . . 6 ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
7239, 47, 71chvarfv 2236 . . . . 5 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
7372eldifad 3895 . . . 4 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
7473expr 456 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → (𝑎𝐹𝑠) ∈ 𝐴))
7531, 74sylbird 259 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
7622, 75pm2.61d 179 1 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456  𝒫 cpw 4530   cint 4876   ciun 4921   class class class wbr 5070   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  Oncon0 6251  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  m cmap 8573  cdom 8689  csdm 8690  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628
This theorem is referenced by:  pwfseqlem4  10349
  Copyright terms: Public domain W3C validator