MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4a Structured version   Visualization version   GIF version

Theorem pwfseqlem4a 9936
Description: Lemma for pwfseqlem4 9937. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem4a ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑠,𝑎,𝐹   𝑤,𝐺   𝑤,𝐾   𝑟,𝑎,𝑥,𝑧,𝐻,𝑠   𝑛,𝑎,𝜑,𝑠,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑎,𝑛,𝑟,𝑠,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑠,𝑟,𝑎)

Proof of Theorem pwfseqlem4a
StepHypRef Expression
1 isfinite 8968 . . 3 (𝑎 ∈ Fin ↔ 𝑎 ≺ ω)
2 simpr 485 . . . . . . 7 ((𝜑𝑎 ∈ Fin) → 𝑎 ∈ Fin)
3 vex 3443 . . . . . . 7 𝑠 ∈ V
4 pwfseqlem4.g . . . . . . . 8 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
5 pwfseqlem4.x . . . . . . . 8 (𝜑𝑋𝐴)
6 pwfseqlem4.h . . . . . . . 8 (𝜑𝐻:ω–1-1-onto𝑋)
7 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
8 pwfseqlem4.k . . . . . . . 8 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
9 pwfseqlem4.d . . . . . . . 8 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
10 pwfseqlem4.f . . . . . . . 8 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
114, 5, 6, 7, 8, 9, 10pwfseqlem2 9934 . . . . . . 7 ((𝑎 ∈ Fin ∧ 𝑠 ∈ V) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
122, 3, 11sylancl 586 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
13 f1of 6490 . . . . . . . . 9 (𝐻:ω–1-1-onto𝑋𝐻:ω⟶𝑋)
146, 13syl 17 . . . . . . . 8 (𝜑𝐻:ω⟶𝑋)
1514, 5fssd 6403 . . . . . . 7 (𝜑𝐻:ω⟶𝐴)
16 ficardom 9243 . . . . . . 7 (𝑎 ∈ Fin → (card‘𝑎) ∈ ω)
17 ffvelrn 6721 . . . . . . 7 ((𝐻:ω⟶𝐴 ∧ (card‘𝑎) ∈ ω) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1815, 16, 17syl2an 595 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1912, 18eqeltrd 2885 . . . . 5 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) ∈ 𝐴)
2019ex 413 . . . 4 (𝜑 → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
2120adantr 481 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
221, 21syl5bir 244 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
23 omelon 8962 . . . . 5 ω ∈ On
24 onenon 9231 . . . . 5 (ω ∈ On → ω ∈ dom card)
2523, 24ax-mp 5 . . . 4 ω ∈ dom card
26 simpr3 1189 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎)
272619.8ad 2147 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎)
28 ween 9314 . . . . 5 (𝑎 ∈ dom card ↔ ∃𝑠 𝑠 We 𝑎)
2927, 28sylibr 235 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card)
30 domtri2 9271 . . . 4 ((ω ∈ dom card ∧ 𝑎 ∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
3125, 29, 30sylancr 587 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
32 nfv 1896 . . . . . . 7 𝑟(𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))
33 nfcv 2951 . . . . . . . . 9 𝑟𝑎
34 nfmpo2 7100 . . . . . . . . . 10 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
3510, 34nfcxfr 2949 . . . . . . . . 9 𝑟𝐹
36 nfcv 2951 . . . . . . . . 9 𝑟𝑠
3733, 35, 36nfov 7053 . . . . . . . 8 𝑟(𝑎𝐹𝑠)
3837nfel1 2965 . . . . . . 7 𝑟(𝑎𝐹𝑠) ∈ (𝐴𝑎)
3932, 38nfim 1882 . . . . . 6 𝑟((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
40 sseq1 3919 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
41 weeq1 5438 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
4240, 413anbi23d 1431 . . . . . . . . 9 (𝑟 = 𝑠 → ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)))
4342anbi1d 629 . . . . . . . 8 (𝑟 = 𝑠 → (((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))
4443anbi2d 628 . . . . . . 7 (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))))
45 oveq2 7031 . . . . . . . 8 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
4645eleq1d 2869 . . . . . . 7 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴𝑎)))
4744, 46imbi12d 346 . . . . . 6 (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))))
48 nfv 1896 . . . . . . . 8 𝑥(𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))
49 nfcv 2951 . . . . . . . . . 10 𝑥𝑎
50 nfmpo1 7099 . . . . . . . . . . 11 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
5110, 50nfcxfr 2949 . . . . . . . . . 10 𝑥𝐹
52 nfcv 2951 . . . . . . . . . 10 𝑥𝑟
5349, 51, 52nfov 7053 . . . . . . . . 9 𝑥(𝑎𝐹𝑟)
5453nfel1 2965 . . . . . . . 8 𝑥(𝑎𝐹𝑟) ∈ (𝐴𝑎)
5548, 54nfim 1882 . . . . . . 7 𝑥((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
56 sseq1 3919 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
57 xpeq12 5475 . . . . . . . . . . . . . 14 ((𝑥 = 𝑎𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5857anidms 567 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5958sseq2d 3926 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎)))
60 weeq2 5439 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
6156, 59, 603anbi123d 1428 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎)))
62 breq2 4972 . . . . . . . . . . 11 (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎))
6361, 62anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑎 → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
647, 63syl5bb 284 . . . . . . . . 9 (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
6564anbi2d 628 . . . . . . . 8 (𝑥 = 𝑎 → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))))
66 oveq1 7030 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
67 difeq2 4020 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
6866, 67eleq12d 2879 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴𝑎)))
6965, 68imbi12d 346 . . . . . . 7 (𝑥 = 𝑎 → (((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))))
704, 5, 6, 7, 8, 9, 10pwfseqlem3 9935 . . . . . . 7 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
7155, 69, 70chvar 2371 . . . . . 6 ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
7239, 47, 71chvar 2371 . . . . 5 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
7372eldifad 3877 . . . 4 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
7473expr 457 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → (𝑎𝐹𝑠) ∈ 𝐴))
7531, 74sylbird 261 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
7622, 75pm2.61d 180 1 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wex 1765  wcel 2083  {crab 3111  Vcvv 3440  cdif 3862  wss 3865  ifcif 4387  𝒫 cpw 4459   cint 4788   ciun 4831   class class class wbr 4968   We wwe 5408   × cxp 5448  ccnv 5449  dom cdm 5450  ran crn 5451  Oncon0 6073  wf 6228  1-1wf1 6229  1-1-ontowf1o 6231  cfv 6232  (class class class)co 7023  cmpo 7025  ωcom 7443  𝑚 cmap 8263  cdom 8362  csdm 8363  Fincfn 8364  cardccrd 9217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-card 9221
This theorem is referenced by:  pwfseqlem4  9937
  Copyright terms: Public domain W3C validator