MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4a Structured version   Visualization version   GIF version

Theorem pwfseqlem4a 10614
Description: Lemma for pwfseqlem4 10615. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem4a ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑠,𝑎,𝐹   𝑤,𝐺   𝑤,𝐾   𝑟,𝑎,𝑥,𝑧,𝐻,𝑠   𝑛,𝑎,𝜑,𝑠,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑎,𝑛,𝑟,𝑠,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑠,𝑟,𝑎)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑠,𝑟,𝑎)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑠,𝑟,𝑎)

Proof of Theorem pwfseqlem4a
StepHypRef Expression
1 isfinite 9605 . . 3 (𝑎 ∈ Fin ↔ 𝑎 ≺ ω)
2 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ Fin) → 𝑎 ∈ Fin)
3 vex 3451 . . . . . . 7 𝑠 ∈ V
4 pwfseqlem4.g . . . . . . . 8 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
5 pwfseqlem4.x . . . . . . . 8 (𝜑𝑋𝐴)
6 pwfseqlem4.h . . . . . . . 8 (𝜑𝐻:ω–1-1-onto𝑋)
7 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
8 pwfseqlem4.k . . . . . . . 8 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
9 pwfseqlem4.d . . . . . . . 8 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
10 pwfseqlem4.f . . . . . . . 8 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
114, 5, 6, 7, 8, 9, 10pwfseqlem2 10612 . . . . . . 7 ((𝑎 ∈ Fin ∧ 𝑠 ∈ V) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
122, 3, 11sylancl 586 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
13 f1of 6800 . . . . . . . . 9 (𝐻:ω–1-1-onto𝑋𝐻:ω⟶𝑋)
146, 13syl 17 . . . . . . . 8 (𝜑𝐻:ω⟶𝑋)
1514, 5fssd 6705 . . . . . . 7 (𝜑𝐻:ω⟶𝐴)
16 ficardom 9914 . . . . . . 7 (𝑎 ∈ Fin → (card‘𝑎) ∈ ω)
17 ffvelcdm 7053 . . . . . . 7 ((𝐻:ω⟶𝐴 ∧ (card‘𝑎) ∈ ω) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1815, 16, 17syl2an 596 . . . . . 6 ((𝜑𝑎 ∈ Fin) → (𝐻‘(card‘𝑎)) ∈ 𝐴)
1912, 18eqeltrd 2828 . . . . 5 ((𝜑𝑎 ∈ Fin) → (𝑎𝐹𝑠) ∈ 𝐴)
2019ex 412 . . . 4 (𝜑 → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
2120adantr 480 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ∈ Fin → (𝑎𝐹𝑠) ∈ 𝐴))
221, 21biimtrrid 243 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
23 omelon 9599 . . . . 5 ω ∈ On
24 onenon 9902 . . . . 5 (ω ∈ On → ω ∈ dom card)
2523, 24ax-mp 5 . . . 4 ω ∈ dom card
26 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎)
272619.8ad 2183 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎)
28 ween 9988 . . . . 5 (𝑎 ∈ dom card ↔ ∃𝑠 𝑠 We 𝑎)
2927, 28sylibr 234 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card)
30 domtri2 9942 . . . 4 ((ω ∈ dom card ∧ 𝑎 ∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
3125, 29, 30sylancr 587 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
32 nfv 1914 . . . . . . 7 𝑟(𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))
33 nfcv 2891 . . . . . . . . 9 𝑟𝑎
34 nfmpo2 7470 . . . . . . . . . 10 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
3510, 34nfcxfr 2889 . . . . . . . . 9 𝑟𝐹
36 nfcv 2891 . . . . . . . . 9 𝑟𝑠
3733, 35, 36nfov 7417 . . . . . . . 8 𝑟(𝑎𝐹𝑠)
3837nfel1 2908 . . . . . . 7 𝑟(𝑎𝐹𝑠) ∈ (𝐴𝑎)
3932, 38nfim 1896 . . . . . 6 𝑟((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
40 sseq1 3972 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
41 weeq1 5625 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
4240, 413anbi23d 1441 . . . . . . . . 9 (𝑟 = 𝑠 → ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)))
4342anbi1d 631 . . . . . . . 8 (𝑟 = 𝑠 → (((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))
4443anbi2d 630 . . . . . . 7 (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))))
45 oveq2 7395 . . . . . . . 8 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
4645eleq1d 2813 . . . . . . 7 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴𝑎)))
4744, 46imbi12d 344 . . . . . 6 (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))))
48 nfv 1914 . . . . . . . 8 𝑥(𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))
49 nfcv 2891 . . . . . . . . . 10 𝑥𝑎
50 nfmpo1 7469 . . . . . . . . . . 11 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
5110, 50nfcxfr 2889 . . . . . . . . . 10 𝑥𝐹
52 nfcv 2891 . . . . . . . . . 10 𝑥𝑟
5349, 51, 52nfov 7417 . . . . . . . . 9 𝑥(𝑎𝐹𝑟)
5453nfel1 2908 . . . . . . . 8 𝑥(𝑎𝐹𝑟) ∈ (𝐴𝑎)
5548, 54nfim 1896 . . . . . . 7 𝑥((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
56 sseq1 3972 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
57 xpeq12 5663 . . . . . . . . . . . . . 14 ((𝑥 = 𝑎𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5857anidms 566 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎))
5958sseq2d 3979 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎)))
60 weeq2 5626 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
6156, 59, 603anbi123d 1438 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎)))
62 breq2 5111 . . . . . . . . . . 11 (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎))
6361, 62anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑎 → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
647, 63bitrid 283 . . . . . . . . 9 (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
6564anbi2d 630 . . . . . . . 8 (𝑥 = 𝑎 → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))))
66 oveq1 7394 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
67 difeq2 4083 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
6866, 67eleq12d 2822 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴𝑎)))
6965, 68imbi12d 344 . . . . . . 7 (𝑥 = 𝑎 → (((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))))
704, 5, 6, 7, 8, 9, 10pwfseqlem3 10613 . . . . . . 7 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
7155, 69, 70chvarfv 2241 . . . . . 6 ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
7239, 47, 71chvarfv 2241 . . . . 5 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
7372eldifad 3926 . . . 4 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
7473expr 456 . . 3 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → (𝑎𝐹𝑠) ∈ 𝐴))
7531, 74sylbird 260 . 2 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → (𝑎𝐹𝑠) ∈ 𝐴))
7622, 75pm2.61d 179 1 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  𝒫 cpw 4563   cint 4910   ciun 4955   class class class wbr 5107   We wwe 5590   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  Oncon0 6332  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  m cmap 8799  cdom 8916  csdm 8917  Fincfn 8918  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892
This theorem is referenced by:  pwfseqlem4  10615
  Copyright terms: Public domain W3C validator