![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1strwunbndx | Structured version Visualization version GIF version |
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | β’ πΊ = {β¨(Baseβndx), π΅β©} |
1strwun.u | β’ (π β π β WUni) |
1strwunbndx.b | β’ (π β (Baseβndx) β π) |
Ref | Expression |
---|---|
1strwunbndx | β’ ((π β§ π΅ β π) β πΊ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1str.g | . 2 β’ πΊ = {β¨(Baseβndx), π΅β©} | |
2 | 1strwun.u | . . . 4 β’ (π β π β WUni) | |
3 | 2 | adantr 481 | . . 3 β’ ((π β§ π΅ β π) β π β WUni) |
4 | 1strwunbndx.b | . . . . 5 β’ (π β (Baseβndx) β π) | |
5 | 4 | adantr 481 | . . . 4 β’ ((π β§ π΅ β π) β (Baseβndx) β π) |
6 | simpr 485 | . . . 4 β’ ((π β§ π΅ β π) β π΅ β π) | |
7 | 3, 5, 6 | wunop 10719 | . . 3 β’ ((π β§ π΅ β π) β β¨(Baseβndx), π΅β© β π) |
8 | 3, 7 | wunsn 10713 | . 2 β’ ((π β§ π΅ β π) β {β¨(Baseβndx), π΅β©} β π) |
9 | 1, 8 | eqeltrid 2837 | 1 β’ ((π β§ π΅ β π) β πΊ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4628 β¨cop 4634 βcfv 6543 WUnicwun 10697 ndxcnx 17128 Basecbs 17146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-tr 5266 df-wun 10699 |
This theorem is referenced by: 1strwun 17166 1strwunOLD 17167 equivestrcsetc 18106 |
Copyright terms: Public domain | W3C validator |