MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1strwunbndx Structured version   Visualization version   GIF version

Theorem 1strwunbndx 17165
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
1str.g 𝐺 = {⟨(Baseβ€˜ndx), 𝐡⟩}
1strwun.u (πœ‘ β†’ π‘ˆ ∈ WUni)
1strwunbndx.b (πœ‘ β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
Assertion
Ref Expression
1strwunbndx ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ 𝐺 ∈ π‘ˆ)

Proof of Theorem 1strwunbndx
StepHypRef Expression
1 1str.g . 2 𝐺 = {⟨(Baseβ€˜ndx), 𝐡⟩}
2 1strwun.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ WUni)
32adantr 481 . . 3 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ π‘ˆ ∈ WUni)
4 1strwunbndx.b . . . . 5 (πœ‘ β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
54adantr 481 . . . 4 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
6 simpr 485 . . . 4 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ 𝐡 ∈ π‘ˆ)
73, 5, 6wunop 10719 . . 3 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ ⟨(Baseβ€˜ndx), 𝐡⟩ ∈ π‘ˆ)
83, 7wunsn 10713 . 2 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ {⟨(Baseβ€˜ndx), 𝐡⟩} ∈ π‘ˆ)
91, 8eqeltrid 2837 1 ((πœ‘ ∧ 𝐡 ∈ π‘ˆ) β†’ 𝐺 ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {csn 4628  βŸ¨cop 4634  β€˜cfv 6543  WUnicwun 10697  ndxcnx 17128  Basecbs 17146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-tr 5266  df-wun 10699
This theorem is referenced by:  1strwun  17166  1strwunOLD  17167  equivestrcsetc  18106
  Copyright terms: Public domain W3C validator