MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1strwunbndx Structured version   Visualization version   GIF version

Theorem 1strwunbndx 17170
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
1strwun.u (𝜑𝑈 ∈ WUni)
1strwunbndx.b (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
1strwunbndx ((𝜑𝐵𝑈) → 𝐺𝑈)

Proof of Theorem 1strwunbndx
StepHypRef Expression
1 1str.g . 2 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
2 1strwun.u . . . 4 (𝜑𝑈 ∈ WUni)
32adantr 480 . . 3 ((𝜑𝐵𝑈) → 𝑈 ∈ WUni)
4 1strwunbndx.b . . . . 5 (𝜑 → (Base‘ndx) ∈ 𝑈)
54adantr 480 . . . 4 ((𝜑𝐵𝑈) → (Base‘ndx) ∈ 𝑈)
6 simpr 484 . . . 4 ((𝜑𝐵𝑈) → 𝐵𝑈)
73, 5, 6wunop 10723 . . 3 ((𝜑𝐵𝑈) → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝑈)
83, 7wunsn 10717 . 2 ((𝜑𝐵𝑈) → {⟨(Base‘ndx), 𝐵⟩} ∈ 𝑈)
91, 8eqeltrid 2836 1 ((𝜑𝐵𝑈) → 𝐺𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {csn 4628  cop 4634  cfv 6543  WUnicwun 10701  ndxcnx 17133  Basecbs 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-tr 5266  df-wun 10703
This theorem is referenced by:  1strwun  17171  1strwunOLD  17172  equivestrcsetc  18114
  Copyright terms: Public domain W3C validator