| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1strwunbndx | Structured version Visualization version GIF version | ||
| Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
| 1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| 1strwunbndx.b | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| 1strwunbndx | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1str.g | . 2 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
| 2 | 1strwun.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ WUni) |
| 4 | 1strwunbndx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → (Base‘ndx) ∈ 𝑈) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
| 7 | 3, 5, 6 | wunop 10613 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 〈(Base‘ndx), 𝐵〉 ∈ 𝑈) |
| 8 | 3, 7 | wunsn 10607 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → {〈(Base‘ndx), 𝐵〉} ∈ 𝑈) |
| 9 | 1, 8 | eqeltrid 2835 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 ‘cfv 6481 WUnicwun 10591 ndxcnx 17104 Basecbs 17120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-tr 5197 df-wun 10593 |
| This theorem is referenced by: 1strwun 17137 equivestrcsetc 18058 |
| Copyright terms: Public domain | W3C validator |