![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1strwunbndx | Structured version Visualization version GIF version |
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
1strwunbndx.b | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
Ref | Expression |
---|---|
1strwunbndx | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1str.g | . 2 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
2 | 1strwun.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | 2 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ WUni) |
4 | 1strwunbndx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
5 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → (Base‘ndx) ∈ 𝑈) |
6 | simpr 478 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
7 | 3, 5, 6 | wunop 9832 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 〈(Base‘ndx), 𝐵〉 ∈ 𝑈) |
8 | 3, 7 | wunsn 9826 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → {〈(Base‘ndx), 𝐵〉} ∈ 𝑈) |
9 | 1, 8 | syl5eqel 2882 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {csn 4368 〈cop 4374 ‘cfv 6101 WUnicwun 9810 ndxcnx 16181 Basecbs 16184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-tr 4946 df-wun 9812 |
This theorem is referenced by: 1strwun 16303 equivestrcsetc 17107 |
Copyright terms: Public domain | W3C validator |