![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1strwunbndx | Structured version Visualization version GIF version |
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
1strwunbndx.b | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
Ref | Expression |
---|---|
1strwunbndx | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1str.g | . 2 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
2 | 1strwun.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ WUni) |
4 | 1strwunbndx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → (Base‘ndx) ∈ 𝑈) |
6 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
7 | 3, 5, 6 | wunop 10791 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 〈(Base‘ndx), 𝐵〉 ∈ 𝑈) |
8 | 3, 7 | wunsn 10785 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → {〈(Base‘ndx), 𝐵〉} ∈ 𝑈) |
9 | 1, 8 | eqeltrid 2848 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 ‘cfv 6573 WUnicwun 10769 ndxcnx 17240 Basecbs 17258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-tr 5284 df-wun 10771 |
This theorem is referenced by: 1strwun 17278 1strwunOLD 17279 equivestrcsetc 18221 |
Copyright terms: Public domain | W3C validator |