|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 1strwun | Structured version Visualization version GIF version | ||
| Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| 1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | 
| 1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) | 
| 1strwun.o | ⊢ (𝜑 → ω ∈ 𝑈) | 
| Ref | Expression | 
|---|---|
| 1strwun | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1str.g | . 2 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
| 2 | 1strwun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | 1strwun.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 4 | 2, 3 | basndxelwund 17258 | . 2 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | 
| 5 | 1, 2, 4 | 1strwunbndx 17265 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4626 〈cop 4632 ‘cfv 6561 ωcom 7887 WUnicwun 10740 ndxcnx 17230 Basecbs 17247 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-pm 8869 df-wun 10742 df-ni 10912 df-pli 10913 df-mi 10914 df-lti 10915 df-plpq 10948 df-mpq 10949 df-ltpq 10950 df-enq 10951 df-nq 10952 df-erq 10953 df-plq 10954 df-mq 10955 df-1nq 10956 df-rq 10957 df-ltnq 10958 df-np 11021 df-plp 11023 df-ltp 11025 df-enr 11095 df-nr 11096 df-c 11161 df-nn 12267 df-slot 17219 df-ndx 17231 df-base 17248 | 
| This theorem is referenced by: setc1strwun 18198 | 
| Copyright terms: Public domain | W3C validator |