MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1strwun Structured version   Visualization version   GIF version

Theorem 1strwun 17021
Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
1strwun.u (𝜑𝑈 ∈ WUni)
1strwun.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
1strwun ((𝜑𝐵𝑈) → 𝐺𝑈)

Proof of Theorem 1strwun
StepHypRef Expression
1 1str.g . 2 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
2 1strwun.u . 2 (𝜑𝑈 ∈ WUni)
3 1strwun.o . . 3 (𝜑 → ω ∈ 𝑈)
42, 3basndxelwund 17013 . 2 (𝜑 → (Base‘ndx) ∈ 𝑈)
51, 2, 41strwunbndx 17020 1 ((𝜑𝐵𝑈) → 𝐺𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  {csn 4572  cop 4578  cfv 6473  ωcom 7772  WUnicwun 10549  ndxcnx 16983  Basecbs 17001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-1cn 11022  ax-addcl 11024
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-oadd 8363  df-omul 8364  df-er 8561  df-ec 8563  df-qs 8567  df-map 8680  df-pm 8681  df-wun 10551  df-ni 10721  df-pli 10722  df-mi 10723  df-lti 10724  df-plpq 10757  df-mpq 10758  df-ltpq 10759  df-enq 10760  df-nq 10761  df-erq 10762  df-plq 10763  df-mq 10764  df-1nq 10765  df-rq 10766  df-ltnq 10767  df-np 10830  df-plp 10832  df-ltp 10834  df-enr 10904  df-nr 10905  df-c 10970  df-nn 12067  df-slot 16972  df-ndx 16984  df-base 17002
This theorem is referenced by:  setc1strwun  17959
  Copyright terms: Public domain W3C validator