MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivestrcsetc Structured version   Visualization version   GIF version

Theorem equivestrcsetc 18100
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcestrcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
equivestrcsetc.i (πœ‘ β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
Assertion
Ref Expression
equivestrcsetc (πœ‘ β†’ (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ βˆ€π‘ ∈ 𝐢 βˆƒπ‘Ž ∈ 𝐡 βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž)))
Distinct variable groups:   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   πœ‘,𝑦   π‘Ž,𝑏,π‘₯,𝑦,𝐡   𝐹,π‘Ž,𝑏   𝐺,π‘Ž,𝑏   𝐸,π‘Ž,𝑏   𝑆,π‘Ž,𝑏   πœ‘,π‘Ž,𝑏   𝐢,π‘Ž   𝑖,𝐹,π‘Ž,𝑏
Allowed substitution hints:   πœ‘(𝑖)   𝐡(𝑖)   𝐢(𝑦,𝑖,𝑏)   𝑆(π‘₯,𝑦,𝑖)   π‘ˆ(π‘₯,𝑦,𝑖,π‘Ž,𝑏)   𝐸(π‘₯,𝑦,𝑖)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦,𝑖)

Proof of Theorem equivestrcsetc
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCatβ€˜π‘ˆ)
2 funcestrcsetc.s . . 3 𝑆 = (SetCatβ€˜π‘ˆ)
3 funcestrcsetc.b . . 3 𝐡 = (Baseβ€˜πΈ)
4 funcestrcsetc.c . . 3 𝐢 = (Baseβ€˜π‘†)
5 funcestrcsetc.u . . 3 (πœ‘ β†’ π‘ˆ ∈ WUni)
6 funcestrcsetc.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
7 funcestrcsetc.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
81, 2, 3, 4, 5, 6, 7fthestrcsetc 18098 . 2 (πœ‘ β†’ 𝐹(𝐸 Faith 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7fullestrcsetc 18099 . 2 (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
102, 5setcbas 18024 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘†))
114, 10eqtr4id 2791 . . . . . . . 8 (πœ‘ β†’ 𝐢 = π‘ˆ)
1211eleq2d 2819 . . . . . . 7 (πœ‘ β†’ (𝑏 ∈ 𝐢 ↔ 𝑏 ∈ π‘ˆ))
13 eqid 2732 . . . . . . . . 9 {⟨(Baseβ€˜ndx), π‘βŸ©} = {⟨(Baseβ€˜ndx), π‘βŸ©}
14 equivestrcsetc.i . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
1513, 5, 141strwunbndx 17159 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ π‘ˆ) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ π‘ˆ)
1615ex 413 . . . . . . 7 (πœ‘ β†’ (𝑏 ∈ π‘ˆ β†’ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ π‘ˆ))
1712, 16sylbid 239 . . . . . 6 (πœ‘ β†’ (𝑏 ∈ 𝐢 β†’ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ π‘ˆ))
1817imp 407 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ π‘ˆ)
191, 5estrcbas 18072 . . . . . . 7 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΈ))
2019adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ π‘ˆ = (Baseβ€˜πΈ))
213, 20eqtr4id 2791 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ 𝐡 = π‘ˆ)
2218, 21eleqtrrd 2836 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ 𝐡)
23 fveq2 6888 . . . . . . 7 (π‘Ž = {⟨(Baseβ€˜ndx), π‘βŸ©} β†’ (πΉβ€˜π‘Ž) = (πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
2423f1oeq3d 6827 . . . . . 6 (π‘Ž = {⟨(Baseβ€˜ndx), π‘βŸ©} β†’ (𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž) ↔ 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©})))
2524exbidv 1924 . . . . 5 (π‘Ž = {⟨(Baseβ€˜ndx), π‘βŸ©} β†’ (βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž) ↔ βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©})))
2625adantl 482 . . . 4 (((πœ‘ ∧ 𝑏 ∈ 𝐢) ∧ π‘Ž = {⟨(Baseβ€˜ndx), π‘βŸ©}) β†’ (βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž) ↔ βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©})))
27 f1oi 6868 . . . . . 6 ( I β†Ύ 𝑏):𝑏–1-1-onto→𝑏
281, 2, 3, 4, 5, 6funcestrcsetclem1 18088 . . . . . . . . 9 ((πœ‘ ∧ {⟨(Baseβ€˜ndx), π‘βŸ©} ∈ 𝐡) β†’ (πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
2922, 28syldan 591 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ (πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
30131strbas 17157 . . . . . . . . 9 (𝑏 ∈ 𝐢 β†’ 𝑏 = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
3130adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ 𝑏 = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
3229, 31eqtr4d 2775 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ (πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) = 𝑏)
3332f1oeq3d 6827 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ (( I β†Ύ 𝑏):𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) ↔ ( I β†Ύ 𝑏):𝑏–1-1-onto→𝑏))
3427, 33mpbiri 257 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ ( I β†Ύ 𝑏):𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
35 resiexg 7901 . . . . . . 7 (𝑏 ∈ V β†’ ( I β†Ύ 𝑏) ∈ V)
3635elv 3480 . . . . . 6 ( I β†Ύ 𝑏) ∈ V
37 f1oeq1 6818 . . . . . 6 (𝑖 = ( I β†Ύ 𝑏) β†’ (𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) ↔ ( I β†Ύ 𝑏):𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©})))
3836, 37spcev 3596 . . . . 5 (( I β†Ύ 𝑏):𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}) β†’ βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
3934, 38syl 17 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜{⟨(Baseβ€˜ndx), π‘βŸ©}))
4022, 26, 39rspcedvd 3614 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐢) β†’ βˆƒπ‘Ž ∈ 𝐡 βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž))
4140ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐢 βˆƒπ‘Ž ∈ 𝐡 βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž))
428, 9, 413jca 1128 1 (πœ‘ β†’ (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ βˆ€π‘ ∈ 𝐢 βˆƒπ‘Ž ∈ 𝐡 βˆƒπ‘– 𝑖:𝑏–1-1-ontoβ†’(πΉβ€˜π‘Ž)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474  {csn 4627  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   β†Ύ cres 5677  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   ↑m cmap 8816  WUnicwun 10691  ndxcnx 17122  Basecbs 17140   Full cful 17849   Faith cfth 17850  SetCatcsetc 18021  ExtStrCatcestrc 18069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-wun 10693  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-func 17804  df-full 17851  df-fth 17852  df-setc 18022  df-estrc 18070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator