Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equivestrcsetc | Structured version Visualization version GIF version |
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
equivestrcsetc.i | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
Ref | Expression |
---|---|
equivestrcsetc | ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fthestrcsetc 17783 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) |
9 | 1, 2, 3, 4, 5, 6, 7 | fullestrcsetc 17784 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) |
10 | 2, 5 | setcbas 17709 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
11 | 4, 10 | eqtr4id 2798 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = 𝑈) |
12 | 11 | eleq2d 2824 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈)) |
13 | eqid 2738 | . . . . . . . . 9 ⊢ {〈(Base‘ndx), 𝑏〉} = {〈(Base‘ndx), 𝑏〉} | |
14 | equivestrcsetc.i | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
15 | 13, 5, 14 | 1strwunbndx 16857 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
16 | 15 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝑈 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
17 | 12, 16 | sylbid 239 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝐶 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
18 | 17 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
19 | 1, 5 | estrcbas 17757 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑈 = (Base‘𝐸)) |
21 | 3, 20 | eqtr4id 2798 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝐵 = 𝑈) |
22 | 18, 21 | eleqtrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) |
23 | fveq2 6756 | . . . . . . 7 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝐹‘𝑎) = (𝐹‘{〈(Base‘ndx), 𝑏〉})) | |
24 | 23 | f1oeq3d 6697 | . . . . . 6 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
25 | 24 | exbidv 1925 | . . . . 5 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
26 | 25 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐶) ∧ 𝑎 = {〈(Base‘ndx), 𝑏〉}) → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
27 | f1oi 6737 | . . . . . 6 ⊢ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏 | |
28 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 17773 | . . . . . . . . 9 ⊢ ((𝜑 ∧ {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
29 | 22, 28 | syldan 590 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
30 | 13 | 1strbas 16856 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐶 → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
31 | 30 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
32 | 29, 31 | eqtr4d 2781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = 𝑏) |
33 | 32 | f1oeq3d 6697 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏)) |
34 | 27, 33 | mpbiri 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
35 | resiexg 7735 | . . . . . . 7 ⊢ (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V) | |
36 | 35 | elv 3428 | . . . . . 6 ⊢ ( I ↾ 𝑏) ∈ V |
37 | f1oeq1 6688 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) | |
38 | 36, 37 | spcev 3535 | . . . . 5 ⊢ (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
39 | 34, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
40 | 22, 26, 39 | rspcedvd 3555 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
41 | 40 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
42 | 8, 9, 41 | 3jca 1126 | 1 ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 {csn 4558 〈cop 4564 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 WUnicwun 10387 ndxcnx 16822 Basecbs 16840 Full cful 17534 Faith cfth 17535 SetCatcsetc 17706 ExtStrCatcestrc 17754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wun 10389 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-func 17489 df-full 17536 df-fth 17537 df-setc 17707 df-estrc 17755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |