MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivestrcsetc Structured version   Visualization version   GIF version

Theorem equivestrcsetc 18113
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
equivestrcsetc.i (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
equivestrcsetc (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦   𝑎,𝑏,𝑥,𝑦,𝐵   𝐹,𝑎,𝑏   𝐺,𝑎,𝑏   𝐸,𝑎,𝑏   𝑆,𝑎,𝑏   𝜑,𝑎,𝑏   𝐶,𝑎   𝑖,𝐹,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑖)   𝐶(𝑦,𝑖,𝑏)   𝑆(𝑥,𝑦,𝑖)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑖)

Proof of Theorem equivestrcsetc
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7fthestrcsetc 18111 . 2 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7fullestrcsetc 18112 . 2 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
102, 5setcbas 18040 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
114, 10eqtr4id 2783 . . . . . . . 8 (𝜑𝐶 = 𝑈)
1211eleq2d 2814 . . . . . . 7 (𝜑 → (𝑏𝐶𝑏𝑈))
13 eqid 2729 . . . . . . . . 9 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
14 equivestrcsetc.i . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ 𝑈)
1513, 5, 141strwunbndx 17195 . . . . . . . 8 ((𝜑𝑏𝑈) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
1615ex 412 . . . . . . 7 (𝜑 → (𝑏𝑈 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1712, 16sylbid 240 . . . . . 6 (𝜑 → (𝑏𝐶 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1817imp 406 . . . . 5 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
191, 5estrcbas 18086 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
2019adantr 480 . . . . . 6 ((𝜑𝑏𝐶) → 𝑈 = (Base‘𝐸))
213, 20eqtr4id 2783 . . . . 5 ((𝜑𝑏𝐶) → 𝐵 = 𝑈)
2218, 21eleqtrrd 2831 . . . 4 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵)
23 fveq2 6858 . . . . . . 7 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝐹𝑎) = (𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
2423f1oeq3d 6797 . . . . . 6 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2524exbidv 1921 . . . . 5 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2625adantl 481 . . . 4 (((𝜑𝑏𝐶) ∧ 𝑎 = {⟨(Base‘ndx), 𝑏⟩}) → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
27 f1oi 6838 . . . . . 6 ( I ↾ 𝑏):𝑏1-1-onto𝑏
281, 2, 3, 4, 5, 6funcestrcsetclem1 18101 . . . . . . . . 9 ((𝜑 ∧ {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
2922, 28syldan 591 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
30131strbas 17194 . . . . . . . . 9 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130adantl 481 . . . . . . . 8 ((𝜑𝑏𝐶) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3229, 31eqtr4d 2767 . . . . . . 7 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = 𝑏)
3332f1oeq3d 6797 . . . . . 6 ((𝜑𝑏𝐶) → (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto𝑏))
3427, 33mpbiri 258 . . . . 5 ((𝜑𝑏𝐶) → ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
35 resiexg 7888 . . . . . . 7 (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V)
3635elv 3452 . . . . . 6 ( I ↾ 𝑏) ∈ V
37 f1oeq1 6788 . . . . . 6 (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
3836, 37spcev 3572 . . . . 5 (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
3934, 38syl 17 . . . 4 ((𝜑𝑏𝐶) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
4022, 26, 39rspcedvd 3590 . . 3 ((𝜑𝑏𝐶) → ∃𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
4140ralrimiva 3125 . 2 (𝜑 → ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
428, 9, 413jca 1128 1 (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   I cid 5532  cres 5640  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  WUnicwun 10653  ndxcnx 17163  Basecbs 17179   Full cful 17866   Faith cfth 17867  SetCatcsetc 18037  ExtStrCatcestrc 18083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wun 10655  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-full 17868  df-fth 17869  df-setc 18038  df-estrc 18084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator