MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivestrcsetc Structured version   Visualization version   GIF version

Theorem equivestrcsetc 18169
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
equivestrcsetc.i (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
equivestrcsetc (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦   𝑎,𝑏,𝑥,𝑦,𝐵   𝐹,𝑎,𝑏   𝐺,𝑎,𝑏   𝐸,𝑎,𝑏   𝑆,𝑎,𝑏   𝜑,𝑎,𝑏   𝐶,𝑎   𝑖,𝐹,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑖)   𝐶(𝑦,𝑖,𝑏)   𝑆(𝑥,𝑦,𝑖)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑖)

Proof of Theorem equivestrcsetc
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7fthestrcsetc 18167 . 2 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7fullestrcsetc 18168 . 2 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
102, 5setcbas 18096 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
114, 10eqtr4id 2790 . . . . . . . 8 (𝜑𝐶 = 𝑈)
1211eleq2d 2821 . . . . . . 7 (𝜑 → (𝑏𝐶𝑏𝑈))
13 eqid 2736 . . . . . . . . 9 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
14 equivestrcsetc.i . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ 𝑈)
1513, 5, 141strwunbndx 17251 . . . . . . . 8 ((𝜑𝑏𝑈) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
1615ex 412 . . . . . . 7 (𝜑 → (𝑏𝑈 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1712, 16sylbid 240 . . . . . 6 (𝜑 → (𝑏𝐶 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1817imp 406 . . . . 5 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
191, 5estrcbas 18142 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
2019adantr 480 . . . . . 6 ((𝜑𝑏𝐶) → 𝑈 = (Base‘𝐸))
213, 20eqtr4id 2790 . . . . 5 ((𝜑𝑏𝐶) → 𝐵 = 𝑈)
2218, 21eleqtrrd 2838 . . . 4 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵)
23 fveq2 6881 . . . . . . 7 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝐹𝑎) = (𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
2423f1oeq3d 6820 . . . . . 6 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2524exbidv 1921 . . . . 5 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2625adantl 481 . . . 4 (((𝜑𝑏𝐶) ∧ 𝑎 = {⟨(Base‘ndx), 𝑏⟩}) → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
27 f1oi 6861 . . . . . 6 ( I ↾ 𝑏):𝑏1-1-onto𝑏
281, 2, 3, 4, 5, 6funcestrcsetclem1 18157 . . . . . . . . 9 ((𝜑 ∧ {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
2922, 28syldan 591 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
30131strbas 17249 . . . . . . . . 9 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130adantl 481 . . . . . . . 8 ((𝜑𝑏𝐶) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3229, 31eqtr4d 2774 . . . . . . 7 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = 𝑏)
3332f1oeq3d 6820 . . . . . 6 ((𝜑𝑏𝐶) → (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto𝑏))
3427, 33mpbiri 258 . . . . 5 ((𝜑𝑏𝐶) → ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
35 resiexg 7913 . . . . . . 7 (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V)
3635elv 3469 . . . . . 6 ( I ↾ 𝑏) ∈ V
37 f1oeq1 6811 . . . . . 6 (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
3836, 37spcev 3590 . . . . 5 (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
3934, 38syl 17 . . . 4 ((𝜑𝑏𝐶) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
4022, 26, 39rspcedvd 3608 . . 3 ((𝜑𝑏𝐶) → ∃𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
4140ralrimiva 3133 . 2 (𝜑 → ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
428, 9, 413jca 1128 1 (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  {csn 4606  cop 4612   class class class wbr 5124  cmpt 5206   I cid 5552  cres 5661  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  WUnicwun 10719  ndxcnx 17217  Basecbs 17233   Full cful 17922   Faith cfth 17923  SetCatcsetc 18093  ExtStrCatcestrc 18139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-wun 10721  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-func 17876  df-full 17924  df-fth 17925  df-setc 18094  df-estrc 18140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator