| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equivestrcsetc | Structured version Visualization version GIF version | ||
| Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
| Ref | Expression |
|---|---|
| funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
| funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| equivestrcsetc.i | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| equivestrcsetc | ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 2 | funcestrcsetc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 3 | funcestrcsetc.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | funcestrcsetc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 5 | funcestrcsetc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | funcestrcsetc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 7 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | fthestrcsetc 18167 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) |
| 9 | 1, 2, 3, 4, 5, 6, 7 | fullestrcsetc 18168 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) |
| 10 | 2, 5 | setcbas 18096 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
| 11 | 4, 10 | eqtr4id 2790 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = 𝑈) |
| 12 | 11 | eleq2d 2821 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈)) |
| 13 | eqid 2736 | . . . . . . . . 9 ⊢ {〈(Base‘ndx), 𝑏〉} = {〈(Base‘ndx), 𝑏〉} | |
| 14 | equivestrcsetc.i | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
| 15 | 13, 5, 14 | 1strwunbndx 17251 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
| 16 | 15 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝑈 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
| 17 | 12, 16 | sylbid 240 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝐶 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
| 18 | 17 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
| 19 | 1, 5 | estrcbas 18142 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑈 = (Base‘𝐸)) |
| 21 | 3, 20 | eqtr4id 2790 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝐵 = 𝑈) |
| 22 | 18, 21 | eleqtrrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) |
| 23 | fveq2 6881 | . . . . . . 7 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝐹‘𝑎) = (𝐹‘{〈(Base‘ndx), 𝑏〉})) | |
| 24 | 23 | f1oeq3d 6820 | . . . . . 6 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
| 25 | 24 | exbidv 1921 | . . . . 5 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐶) ∧ 𝑎 = {〈(Base‘ndx), 𝑏〉}) → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
| 27 | f1oi 6861 | . . . . . 6 ⊢ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏 | |
| 28 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 18157 | . . . . . . . . 9 ⊢ ((𝜑 ∧ {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
| 29 | 22, 28 | syldan 591 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
| 30 | 13 | 1strbas 17249 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐶 → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
| 31 | 30 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
| 32 | 29, 31 | eqtr4d 2774 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = 𝑏) |
| 33 | 32 | f1oeq3d 6820 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏)) |
| 34 | 27, 33 | mpbiri 258 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
| 35 | resiexg 7913 | . . . . . . 7 ⊢ (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V) | |
| 36 | 35 | elv 3469 | . . . . . 6 ⊢ ( I ↾ 𝑏) ∈ V |
| 37 | f1oeq1 6811 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) | |
| 38 | 36, 37 | spcev 3590 | . . . . 5 ⊢ (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
| 39 | 34, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
| 40 | 22, 26, 39 | rspcedvd 3608 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
| 41 | 40 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
| 42 | 8, 9, 41 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 {csn 4606 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 I cid 5552 ↾ cres 5661 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ↑m cmap 8845 WUnicwun 10719 ndxcnx 17217 Basecbs 17233 Full cful 17922 Faith cfth 17923 SetCatcsetc 18093 ExtStrCatcestrc 18139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-wun 10721 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-full 17924 df-fth 17925 df-setc 18094 df-estrc 18140 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |