MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivestrcsetc Structured version   Visualization version   GIF version

Theorem equivestrcsetc 18089
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
equivestrcsetc.i (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
equivestrcsetc (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦   𝑎,𝑏,𝑥,𝑦,𝐵   𝐹,𝑎,𝑏   𝐺,𝑎,𝑏   𝐸,𝑎,𝑏   𝑆,𝑎,𝑏   𝜑,𝑎,𝑏   𝐶,𝑎   𝑖,𝐹,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑖)   𝐶(𝑦,𝑖,𝑏)   𝑆(𝑥,𝑦,𝑖)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑖)

Proof of Theorem equivestrcsetc
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7fthestrcsetc 18087 . 2 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7fullestrcsetc 18088 . 2 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
102, 5setcbas 18016 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
114, 10eqtr4id 2783 . . . . . . . 8 (𝜑𝐶 = 𝑈)
1211eleq2d 2814 . . . . . . 7 (𝜑 → (𝑏𝐶𝑏𝑈))
13 eqid 2729 . . . . . . . . 9 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
14 equivestrcsetc.i . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ 𝑈)
1513, 5, 141strwunbndx 17171 . . . . . . . 8 ((𝜑𝑏𝑈) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
1615ex 412 . . . . . . 7 (𝜑 → (𝑏𝑈 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1712, 16sylbid 240 . . . . . 6 (𝜑 → (𝑏𝐶 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1817imp 406 . . . . 5 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
191, 5estrcbas 18062 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
2019adantr 480 . . . . . 6 ((𝜑𝑏𝐶) → 𝑈 = (Base‘𝐸))
213, 20eqtr4id 2783 . . . . 5 ((𝜑𝑏𝐶) → 𝐵 = 𝑈)
2218, 21eleqtrrd 2831 . . . 4 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵)
23 fveq2 6840 . . . . . . 7 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝐹𝑎) = (𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
2423f1oeq3d 6779 . . . . . 6 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2524exbidv 1921 . . . . 5 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2625adantl 481 . . . 4 (((𝜑𝑏𝐶) ∧ 𝑎 = {⟨(Base‘ndx), 𝑏⟩}) → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
27 f1oi 6820 . . . . . 6 ( I ↾ 𝑏):𝑏1-1-onto𝑏
281, 2, 3, 4, 5, 6funcestrcsetclem1 18077 . . . . . . . . 9 ((𝜑 ∧ {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
2922, 28syldan 591 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
30131strbas 17170 . . . . . . . . 9 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130adantl 481 . . . . . . . 8 ((𝜑𝑏𝐶) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3229, 31eqtr4d 2767 . . . . . . 7 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = 𝑏)
3332f1oeq3d 6779 . . . . . 6 ((𝜑𝑏𝐶) → (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto𝑏))
3427, 33mpbiri 258 . . . . 5 ((𝜑𝑏𝐶) → ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
35 resiexg 7868 . . . . . . 7 (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V)
3635elv 3449 . . . . . 6 ( I ↾ 𝑏) ∈ V
37 f1oeq1 6770 . . . . . 6 (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
3836, 37spcev 3569 . . . . 5 (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
3934, 38syl 17 . . . 4 ((𝜑𝑏𝐶) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
4022, 26, 39rspcedvd 3587 . . 3 ((𝜑𝑏𝐶) → ∃𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
4140ralrimiva 3125 . 2 (𝜑 → ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
428, 9, 413jca 1128 1 (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183   I cid 5525  cres 5633  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  WUnicwun 10629  ndxcnx 17139  Basecbs 17155   Full cful 17842   Faith cfth 17843  SetCatcsetc 18013  ExtStrCatcestrc 18059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-wun 10631  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-full 17844  df-fth 17845  df-setc 18014  df-estrc 18060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator