MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivestrcsetc Structured version   Visualization version   GIF version

Theorem equivestrcsetc 18058
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
equivestrcsetc.i (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
equivestrcsetc (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦   𝑎,𝑏,𝑥,𝑦,𝐵   𝐹,𝑎,𝑏   𝐺,𝑎,𝑏   𝐸,𝑎,𝑏   𝑆,𝑎,𝑏   𝜑,𝑎,𝑏   𝐶,𝑎   𝑖,𝐹,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑖)   𝐶(𝑦,𝑖,𝑏)   𝑆(𝑥,𝑦,𝑖)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑖)

Proof of Theorem equivestrcsetc
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7fthestrcsetc 18056 . 2 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7fullestrcsetc 18057 . 2 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
102, 5setcbas 17985 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
114, 10eqtr4id 2783 . . . . . . . 8 (𝜑𝐶 = 𝑈)
1211eleq2d 2814 . . . . . . 7 (𝜑 → (𝑏𝐶𝑏𝑈))
13 eqid 2729 . . . . . . . . 9 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
14 equivestrcsetc.i . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ 𝑈)
1513, 5, 141strwunbndx 17136 . . . . . . . 8 ((𝜑𝑏𝑈) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
1615ex 412 . . . . . . 7 (𝜑 → (𝑏𝑈 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1712, 16sylbid 240 . . . . . 6 (𝜑 → (𝑏𝐶 → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈))
1817imp 406 . . . . 5 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝑈)
191, 5estrcbas 18031 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
2019adantr 480 . . . . . 6 ((𝜑𝑏𝐶) → 𝑈 = (Base‘𝐸))
213, 20eqtr4id 2783 . . . . 5 ((𝜑𝑏𝐶) → 𝐵 = 𝑈)
2218, 21eleqtrrd 2831 . . . 4 ((𝜑𝑏𝐶) → {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵)
23 fveq2 6822 . . . . . . 7 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝐹𝑎) = (𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
2423f1oeq3d 6761 . . . . . 6 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2524exbidv 1921 . . . . 5 (𝑎 = {⟨(Base‘ndx), 𝑏⟩} → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
2625adantl 481 . . . 4 (((𝜑𝑏𝐶) ∧ 𝑎 = {⟨(Base‘ndx), 𝑏⟩}) → (∃𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎) ↔ ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
27 f1oi 6802 . . . . . 6 ( I ↾ 𝑏):𝑏1-1-onto𝑏
281, 2, 3, 4, 5, 6funcestrcsetclem1 18046 . . . . . . . . 9 ((𝜑 ∧ {⟨(Base‘ndx), 𝑏⟩} ∈ 𝐵) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
2922, 28syldan 591 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
30131strbas 17135 . . . . . . . . 9 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130adantl 481 . . . . . . . 8 ((𝜑𝑏𝐶) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3229, 31eqtr4d 2767 . . . . . . 7 ((𝜑𝑏𝐶) → (𝐹‘{⟨(Base‘ndx), 𝑏⟩}) = 𝑏)
3332f1oeq3d 6761 . . . . . 6 ((𝜑𝑏𝐶) → (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto𝑏))
3427, 33mpbiri 258 . . . . 5 ((𝜑𝑏𝐶) → ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
35 resiexg 7845 . . . . . . 7 (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V)
3635elv 3441 . . . . . 6 ( I ↾ 𝑏) ∈ V
37 f1oeq1 6752 . . . . . 6 (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) ↔ ( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩})))
3836, 37spcev 3561 . . . . 5 (( I ↾ 𝑏):𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
3934, 38syl 17 . . . 4 ((𝜑𝑏𝐶) → ∃𝑖 𝑖:𝑏1-1-onto→(𝐹‘{⟨(Base‘ndx), 𝑏⟩}))
4022, 26, 39rspcedvd 3579 . . 3 ((𝜑𝑏𝐶) → ∃𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
4140ralrimiva 3121 . 2 (𝜑 → ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎))
428, 9, 413jca 1128 1 (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏𝐶𝑎𝐵𝑖 𝑖:𝑏1-1-onto→(𝐹𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   I cid 5513  cres 5621  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753  WUnicwun 10594  ndxcnx 17104  Basecbs 17120   Full cful 17811   Faith cfth 17812  SetCatcsetc 17982  ExtStrCatcestrc 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-wun 10596  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-func 17765  df-full 17813  df-fth 17814  df-setc 17983  df-estrc 18029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator