Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrc Structured version   Visualization version   GIF version

Theorem ismrc 37767
Description: A function is a Moore closure operator iff it satisfies mrcssid 16485, mrcss 16484, and mrcidm 16487. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
ismrc (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ismrc
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmrc 16475 . . . . 5 mrCls Fn ran Moore
2 fnfun 6202 . . . . 5 (mrCls Fn ran Moore → Fun mrCls)
31, 2ax-mp 5 . . . 4 Fun mrCls
4 fvelima 6472 . . . 4 ((Fun mrCls ∧ 𝐹 ∈ (mrCls “ (Moore‘𝐵))) → ∃𝑧 ∈ (Moore‘𝐵)(mrCls‘𝑧) = 𝐹)
53, 4mpan 673 . . 3 (𝐹 ∈ (mrCls “ (Moore‘𝐵)) → ∃𝑧 ∈ (Moore‘𝐵)(mrCls‘𝑧) = 𝐹)
6 elfvex 6444 . . . . . 6 (𝑧 ∈ (Moore‘𝐵) → 𝐵 ∈ V)
7 eqid 2813 . . . . . . . 8 (mrCls‘𝑧) = (mrCls‘𝑧)
87mrcf 16477 . . . . . . 7 (𝑧 ∈ (Moore‘𝐵) → (mrCls‘𝑧):𝒫 𝐵𝑧)
9 mresspw 16460 . . . . . . 7 (𝑧 ∈ (Moore‘𝐵) → 𝑧 ⊆ 𝒫 𝐵)
108, 9fssd 6273 . . . . . 6 (𝑧 ∈ (Moore‘𝐵) → (mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵)
117mrcssid 16485 . . . . . . . . . 10 ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑥𝐵) → 𝑥 ⊆ ((mrCls‘𝑧)‘𝑥))
1211adantrr 699 . . . . . . . . 9 ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥𝐵𝑦𝑥)) → 𝑥 ⊆ ((mrCls‘𝑧)‘𝑥))
137mrcss 16484 . . . . . . . . . . 11 ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑦𝑥𝑥𝐵) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥))
14133expb 1142 . . . . . . . . . 10 ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑦𝑥𝑥𝐵)) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥))
1514ancom2s 632 . . . . . . . . 9 ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥𝐵𝑦𝑥)) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥))
167mrcidm 16487 . . . . . . . . . 10 ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑥𝐵) → ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))
1716adantrr 699 . . . . . . . . 9 ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥𝐵𝑦𝑥)) → ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))
1812, 15, 173jca 1151 . . . . . . . 8 ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥𝐵𝑦𝑥)) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))
1918ex 399 . . . . . . 7 (𝑧 ∈ (Moore‘𝐵) → ((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))))
2019alrimivv 2019 . . . . . 6 (𝑧 ∈ (Moore‘𝐵) → ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))))
216, 10, 203jca 1151 . . . . 5 (𝑧 ∈ (Moore‘𝐵) → (𝐵 ∈ V ∧ (mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))))
22 feq1 6240 . . . . . 6 ((mrCls‘𝑧) = 𝐹 → ((mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵𝐹:𝒫 𝐵⟶𝒫 𝐵))
23 fveq1 6410 . . . . . . . . . 10 ((mrCls‘𝑧) = 𝐹 → ((mrCls‘𝑧)‘𝑥) = (𝐹𝑥))
2423sseq2d 3837 . . . . . . . . 9 ((mrCls‘𝑧) = 𝐹 → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ↔ 𝑥 ⊆ (𝐹𝑥)))
25 fveq1 6410 . . . . . . . . . 10 ((mrCls‘𝑧) = 𝐹 → ((mrCls‘𝑧)‘𝑦) = (𝐹𝑦))
2625, 23sseq12d 3838 . . . . . . . . 9 ((mrCls‘𝑧) = 𝐹 → (((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ↔ (𝐹𝑦) ⊆ (𝐹𝑥)))
27 id 22 . . . . . . . . . . 11 ((mrCls‘𝑧) = 𝐹 → (mrCls‘𝑧) = 𝐹)
2827, 23fveq12d 6418 . . . . . . . . . 10 ((mrCls‘𝑧) = 𝐹 → ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = (𝐹‘(𝐹𝑥)))
2928, 23eqeq12d 2828 . . . . . . . . 9 ((mrCls‘𝑧) = 𝐹 → (((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥) ↔ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))
3024, 26, 293anbi123d 1553 . . . . . . . 8 ((mrCls‘𝑧) = 𝐹 → ((𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)) ↔ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))))
3130imbi2d 331 . . . . . . 7 ((mrCls‘𝑧) = 𝐹 → (((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))) ↔ ((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
32312albidv 2014 . . . . . 6 ((mrCls‘𝑧) = 𝐹 → (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
3322, 323anbi23d 1556 . . . . 5 ((mrCls‘𝑧) = 𝐹 → ((𝐵 ∈ V ∧ (mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))))))
3421, 33syl5ibcom 236 . . . 4 (𝑧 ∈ (Moore‘𝐵) → ((mrCls‘𝑧) = 𝐹 → (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))))))
3534rexlimiv 3222 . . 3 (∃𝑧 ∈ (Moore‘𝐵)(mrCls‘𝑧) = 𝐹 → (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
365, 35syl 17 . 2 (𝐹 ∈ (mrCls “ (Moore‘𝐵)) → (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
37 simp1 1159 . . . 4 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → 𝐵 ∈ V)
38 simp2 1160 . . . 4 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → 𝐹:𝒫 𝐵⟶𝒫 𝐵)
39 ssid 3827 . . . . . . 7 𝑧𝑧
40 3simpb 1173 . . . . . . . . . . 11 ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))
4140imim2i 16 . . . . . . . . . 10 (((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))))
42412alimi 1897 . . . . . . . . 9 (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))))
43 vex 3401 . . . . . . . . . 10 𝑧 ∈ V
44 sseq1 3830 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
4544adantr 468 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑦 = 𝑧) → (𝑥𝐵𝑧𝐵))
46 sseq12 3832 . . . . . . . . . . . . . 14 ((𝑦 = 𝑧𝑥 = 𝑧) → (𝑦𝑥𝑧𝑧))
4746ancoms 448 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑦 = 𝑧) → (𝑦𝑥𝑧𝑧))
4845, 47anbi12d 618 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑧) → ((𝑥𝐵𝑦𝑥) ↔ (𝑧𝐵𝑧𝑧)))
49 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧𝑥 = 𝑧)
50 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5149, 50sseq12d 3838 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹𝑧)))
5251adantr 468 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑦 = 𝑧) → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹𝑧)))
53 2fveq3 6416 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑧)))
5453, 50eqeq12d 2828 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝐹‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
5554adantr 468 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑦 = 𝑧) → ((𝐹‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
5652, 55anbi12d 618 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑧) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)) ↔ (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
5748, 56imbi12d 335 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = 𝑧) → (((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) ↔ ((𝑧𝐵𝑧𝑧) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))))
5857spc2gv 3496 . . . . . . . . . 10 ((𝑧 ∈ V ∧ 𝑧 ∈ V) → (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ((𝑧𝐵𝑧𝑧) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))))
5943, 43, 58mp2an 675 . . . . . . . . 9 (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ((𝑧𝐵𝑧𝑧) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
6042, 59syl 17 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ((𝑧𝐵𝑧𝑧) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
61603ad2ant3 1158 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → ((𝑧𝐵𝑧𝑧) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
6239, 61mpan2i 680 . . . . . 6 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → (𝑧𝐵 → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
6362imp 395 . . . . 5 (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) ∧ 𝑧𝐵) → (𝑧 ⊆ (𝐹𝑧) ∧ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
6463simpld 484 . . . 4 (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐹𝑧))
65 simp2 1160 . . . . . . . . 9 ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)) → (𝐹𝑦) ⊆ (𝐹𝑥))
6665imim2i 16 . . . . . . . 8 (((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
67662alimi 1897 . . . . . . 7 (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥))) → ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
68673ad2ant3 1158 . . . . . 6 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
69 vex 3401 . . . . . . 7 𝑤 ∈ V
7044adantr 468 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐵𝑧𝐵))
71 sseq12 3832 . . . . . . . . . . 11 ((𝑦 = 𝑤𝑥 = 𝑧) → (𝑦𝑥𝑤𝑧))
7271ancoms 448 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝑥𝑤𝑧))
7370, 72anbi12d 618 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝑥) ↔ (𝑧𝐵𝑤𝑧)))
74 fveq2 6411 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
75 sseq12 3832 . . . . . . . . . 10 (((𝐹𝑦) = (𝐹𝑤) ∧ (𝐹𝑥) = (𝐹𝑧)) → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹𝑤) ⊆ (𝐹𝑧)))
7674, 50, 75syl2anr 586 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹𝑤) ⊆ (𝐹𝑧)))
7773, 76imbi12d 335 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((𝑧𝐵𝑤𝑧) → (𝐹𝑤) ⊆ (𝐹𝑧))))
7877spc2gv 3496 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑧𝐵𝑤𝑧) → (𝐹𝑤) ⊆ (𝐹𝑧))))
7943, 69, 78mp2an 675 . . . . . 6 (∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑧𝐵𝑤𝑧) → (𝐹𝑤) ⊆ (𝐹𝑧)))
8068, 79syl 17 . . . . 5 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → ((𝑧𝐵𝑤𝑧) → (𝐹𝑤) ⊆ (𝐹𝑧)))
81803impib 1137 . . . 4 (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) ∧ 𝑧𝐵𝑤𝑧) → (𝐹𝑤) ⊆ (𝐹𝑧))
8263simprd 485 . . . 4 (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) ∧ 𝑧𝐵) → (𝐹‘(𝐹𝑧)) = (𝐹𝑧))
8337, 38, 64, 81, 82ismrcd2 37765 . . 3 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → 𝐹 = (mrCls‘dom (𝐹 ∩ I )))
8437, 38, 64, 81, 82ismrcd1 37764 . . . 4 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
85 fvssunirn 6440 . . . . . 6 (Moore‘𝐵) ⊆ ran Moore
86 fndm 6204 . . . . . . 7 (mrCls Fn ran Moore → dom mrCls = ran Moore)
871, 86ax-mp 5 . . . . . 6 dom mrCls = ran Moore
8885, 87sseqtr4i 3842 . . . . 5 (Moore‘𝐵) ⊆ dom mrCls
89 funfvima2 6721 . . . . 5 ((Fun mrCls ∧ (Moore‘𝐵) ⊆ dom mrCls) → (dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) → (mrCls‘dom (𝐹 ∩ I )) ∈ (mrCls “ (Moore‘𝐵))))
903, 88, 89mp2an 675 . . . 4 (dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) → (mrCls‘dom (𝐹 ∩ I )) ∈ (mrCls “ (Moore‘𝐵)))
9184, 90syl 17 . . 3 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → (mrCls‘dom (𝐹 ∩ I )) ∈ (mrCls “ (Moore‘𝐵)))
9283, 91eqeltrd 2892 . 2 ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))) → 𝐹 ∈ (mrCls “ (Moore‘𝐵)))
9336, 92impbii 200 1 (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥𝑦((𝑥𝐵𝑦𝑥) → (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑦) ⊆ (𝐹𝑥) ∧ (𝐹‘(𝐹𝑥)) = (𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wal 1635   = wceq 1637  wcel 2157  wrex 3104  Vcvv 3398  cin 3775  wss 3776  𝒫 cpw 4358   cuni 4637   I cid 5225  dom cdm 5318  ran crn 5319  cima 5321  Fun wfun 6098   Fn wfn 6099  wf 6100  cfv 6104  Moorecmre 16450  mrClscmrc 16451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-int 4677  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-fv 6112  df-mre 16454  df-mrc 16455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator