Step | Hyp | Ref
| Expression |
1 | | fnmrc 17233 |
. . . . 5
⊢ mrCls Fn
∪ ran Moore |
2 | | fnfun 6517 |
. . . . 5
⊢ (mrCls Fn
∪ ran Moore → Fun mrCls) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
mrCls |
4 | | fvelima 6817 |
. . . 4
⊢ ((Fun
mrCls ∧ 𝐹 ∈ (mrCls
“ (Moore‘𝐵)))
→ ∃𝑧 ∈
(Moore‘𝐵)(mrCls‘𝑧) = 𝐹) |
5 | 3, 4 | mpan 686 |
. . 3
⊢ (𝐹 ∈ (mrCls “
(Moore‘𝐵)) →
∃𝑧 ∈
(Moore‘𝐵)(mrCls‘𝑧) = 𝐹) |
6 | | elfvex 6789 |
. . . . . 6
⊢ (𝑧 ∈ (Moore‘𝐵) → 𝐵 ∈ V) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(mrCls‘𝑧) =
(mrCls‘𝑧) |
8 | 7 | mrcf 17235 |
. . . . . . 7
⊢ (𝑧 ∈ (Moore‘𝐵) → (mrCls‘𝑧):𝒫 𝐵⟶𝑧) |
9 | | mresspw 17218 |
. . . . . . 7
⊢ (𝑧 ∈ (Moore‘𝐵) → 𝑧 ⊆ 𝒫 𝐵) |
10 | 8, 9 | fssd 6602 |
. . . . . 6
⊢ (𝑧 ∈ (Moore‘𝐵) → (mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵) |
11 | 7 | mrcssid 17243 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ ((mrCls‘𝑧)‘𝑥)) |
12 | 11 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ ((mrCls‘𝑧)‘𝑥)) |
13 | 7 | mrcss 17242 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥)) |
14 | 13 | 3expb 1118 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥)) |
15 | 14 | ancom2s 646 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥)) → ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥)) |
16 | 7 | mrcidm 17245 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ 𝑥 ⊆ 𝐵) → ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)) |
17 | 16 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥)) → ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)) |
18 | 12, 15, 17 | 3jca 1126 |
. . . . . . . 8
⊢ ((𝑧 ∈ (Moore‘𝐵) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))) |
19 | 18 | ex 412 |
. . . . . . 7
⊢ (𝑧 ∈ (Moore‘𝐵) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))) |
20 | 19 | alrimivv 1932 |
. . . . . 6
⊢ (𝑧 ∈ (Moore‘𝐵) → ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))) |
21 | 6, 10, 20 | 3jca 1126 |
. . . . 5
⊢ (𝑧 ∈ (Moore‘𝐵) → (𝐵 ∈ V ∧ (mrCls‘𝑧):𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))))) |
22 | | feq1 6565 |
. . . . . 6
⊢
((mrCls‘𝑧) =
𝐹 →
((mrCls‘𝑧):𝒫
𝐵⟶𝒫 𝐵 ↔ 𝐹:𝒫 𝐵⟶𝒫 𝐵)) |
23 | | fveq1 6755 |
. . . . . . . . . 10
⊢
((mrCls‘𝑧) =
𝐹 →
((mrCls‘𝑧)‘𝑥) = (𝐹‘𝑥)) |
24 | 23 | sseq2d 3949 |
. . . . . . . . 9
⊢
((mrCls‘𝑧) =
𝐹 → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ↔ 𝑥 ⊆ (𝐹‘𝑥))) |
25 | | fveq1 6755 |
. . . . . . . . . 10
⊢
((mrCls‘𝑧) =
𝐹 →
((mrCls‘𝑧)‘𝑦) = (𝐹‘𝑦)) |
26 | 25, 23 | sseq12d 3950 |
. . . . . . . . 9
⊢
((mrCls‘𝑧) =
𝐹 →
(((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
27 | | id 22 |
. . . . . . . . . . 11
⊢
((mrCls‘𝑧) =
𝐹 → (mrCls‘𝑧) = 𝐹) |
28 | 27, 23 | fveq12d 6763 |
. . . . . . . . . 10
⊢
((mrCls‘𝑧) =
𝐹 →
((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = (𝐹‘(𝐹‘𝑥))) |
29 | 28, 23 | eqeq12d 2754 |
. . . . . . . . 9
⊢
((mrCls‘𝑧) =
𝐹 →
(((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥) ↔ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) |
30 | 24, 26, 29 | 3anbi123d 1434 |
. . . . . . . 8
⊢
((mrCls‘𝑧) =
𝐹 → ((𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)) ↔ (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) |
31 | 30 | imbi2d 340 |
. . . . . . 7
⊢
((mrCls‘𝑧) =
𝐹 → (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))) ↔ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) |
32 | 31 | 2albidv 1927 |
. . . . . 6
⊢
((mrCls‘𝑧) =
𝐹 → (∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥))) ↔ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) |
33 | 22, 32 | 3anbi23d 1437 |
. . . . 5
⊢
((mrCls‘𝑧) =
𝐹 → ((𝐵 ∈ V ∧
(mrCls‘𝑧):𝒫
𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘𝑦) ⊆ ((mrCls‘𝑧)‘𝑥) ∧ ((mrCls‘𝑧)‘((mrCls‘𝑧)‘𝑥)) = ((mrCls‘𝑧)‘𝑥)))) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))))) |
34 | 21, 33 | syl5ibcom 244 |
. . . 4
⊢ (𝑧 ∈ (Moore‘𝐵) → ((mrCls‘𝑧) = 𝐹 → (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))))) |
35 | 34 | rexlimiv 3208 |
. . 3
⊢
(∃𝑧 ∈
(Moore‘𝐵)(mrCls‘𝑧) = 𝐹 → (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) |
36 | 5, 35 | syl 17 |
. 2
⊢ (𝐹 ∈ (mrCls “
(Moore‘𝐵)) →
(𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) |
37 | | simp1 1134 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → 𝐵 ∈ V) |
38 | | simp2 1135 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → 𝐹:𝒫 𝐵⟶𝒫 𝐵) |
39 | | ssid 3939 |
. . . . . . 7
⊢ 𝑧 ⊆ 𝑧 |
40 | | 3simpb 1147 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) |
41 | 40 | imim2i 16 |
. . . . . . . . . 10
⊢ (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) |
42 | 41 | 2alimi 1816 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) |
43 | | sseq1 3942 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵)) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → (𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵)) |
45 | | sseq12 3944 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑧) → (𝑦 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑧)) |
46 | 45 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → (𝑦 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑧)) |
47 | 44, 46 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) ↔ (𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧))) |
48 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
49 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
50 | 48, 49 | sseq12d 3950 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝑧 ⊆ (𝐹‘𝑧))) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝑧 ⊆ (𝐹‘𝑧))) |
52 | | 2fveq3 6761 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑧))) |
53 | 52, 49 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → ((𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
55 | 51, 54 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ↔ (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
56 | 47, 55 | imbi12d 344 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) ↔ ((𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))))) |
57 | 56 | spc2gv 3529 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ 𝑧 ∈ V) → (∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))))) |
58 | 57 | el2v 3430 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
59 | 42, 58 | syl 17 |
. . . . . . . 8
⊢
(∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
60 | 59 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝑧) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
61 | 39, 60 | mpan2i 693 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → (𝑧 ⊆ 𝐵 → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
62 | 61 | imp 406 |
. . . . 5
⊢ (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) ∧ 𝑧 ⊆ 𝐵) → (𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
63 | 62 | simpld 494 |
. . . 4
⊢ (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)) |
64 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
65 | 64 | imim2i 16 |
. . . . . . . 8
⊢ (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
66 | 65 | 2alimi 1816 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
67 | 66 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
68 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵)) |
69 | | sseq12 3944 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) → (𝑦 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑧)) |
70 | 69 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑦 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑧)) |
71 | 68, 70 | anbi12d 630 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) ↔ (𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧))) |
72 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
73 | | sseq12 3944 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑦) = (𝐹‘𝑤) ∧ (𝐹‘𝑥) = (𝐹‘𝑧)) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑤) ⊆ (𝐹‘𝑧))) |
74 | 72, 49, 73 | syl2anr 596 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑤) ⊆ (𝐹‘𝑧))) |
75 | 71, 74 | imbi12d 344 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ↔ ((𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧) → (𝐹‘𝑤) ⊆ (𝐹‘𝑧)))) |
76 | 75 | spc2gv 3529 |
. . . . . . 7
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧) → (𝐹‘𝑤) ⊆ (𝐹‘𝑧)))) |
77 | 76 | el2v 3430 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧) → (𝐹‘𝑤) ⊆ (𝐹‘𝑧))) |
78 | 67, 77 | syl 17 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → ((𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧) → (𝐹‘𝑤) ⊆ (𝐹‘𝑧))) |
79 | 78 | 3impib 1114 |
. . . 4
⊢ (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) ∧ 𝑧 ⊆ 𝐵 ∧ 𝑤 ⊆ 𝑧) → (𝐹‘𝑤) ⊆ (𝐹‘𝑧)) |
80 | 62 | simprd 495 |
. . . 4
⊢ (((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) ∧ 𝑧 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)) |
81 | 37, 38, 63, 79, 80 | ismrcd2 40437 |
. . 3
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) |
82 | 37, 38, 63, 79, 80 | ismrcd1 40436 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
83 | | fvssunirn 6785 |
. . . . . 6
⊢
(Moore‘𝐵)
⊆ ∪ ran Moore |
84 | 1 | fndmi 6521 |
. . . . . 6
⊢ dom mrCls
= ∪ ran Moore |
85 | 83, 84 | sseqtrri 3954 |
. . . . 5
⊢
(Moore‘𝐵)
⊆ dom mrCls |
86 | | funfvima2 7089 |
. . . . 5
⊢ ((Fun
mrCls ∧ (Moore‘𝐵)
⊆ dom mrCls) → (dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) → (mrCls‘dom (𝐹 ∩ I )) ∈ (mrCls
“ (Moore‘𝐵)))) |
87 | 3, 85, 86 | mp2an 688 |
. . . 4
⊢ (dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) →
(mrCls‘dom (𝐹 ∩ I
)) ∈ (mrCls “ (Moore‘𝐵))) |
88 | 82, 87 | syl 17 |
. . 3
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → (mrCls‘dom (𝐹 ∩ I )) ∈ (mrCls
“ (Moore‘𝐵))) |
89 | 81, 88 | eqeltrd 2839 |
. 2
⊢ ((𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)))) → 𝐹 ∈ (mrCls “ (Moore‘𝐵))) |
90 | 36, 89 | impbii 208 |
1
⊢ (𝐹 ∈ (mrCls “
(Moore‘𝐵)) ↔
(𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) |