MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecovdi Structured version   Visualization version   GIF version

Theorem ecovdi 8388
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovdi.1 𝐷 = ((𝑆 × 𝑆) / )
ecovdi.2 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
ecovdi.3 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovdi.4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
ecovdi.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
ecovdi.6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
ecovdi.7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
ecovdi.8 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
ecovdi.9 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
ecovdi.10 𝐻 = 𝐾
ecovdi.11 𝐽 = 𝐿
Assertion
Ref Expression
ecovdi ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑤,𝐶,𝑣,𝑢   𝑥, + ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, · ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝐷,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecovdi
StepHypRef Expression
1 ecovdi.1 . 2 𝐷 = ((𝑆 × 𝑆) / )
2 oveq1 7142 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )))
3 oveq1 7142 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = (𝐴 · [⟨𝑧, 𝑤⟩] ))
4 oveq1 7142 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = (𝐴 · [⟨𝑣, 𝑢⟩] ))
53, 4oveq12d 7153 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
62, 5eqeq12d 2814 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
7 oveq1 7142 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = (𝐵 + [⟨𝑣, 𝑢⟩] ))
87oveq2d 7151 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )))
9 oveq2 7143 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · [⟨𝑧, 𝑤⟩] ) = (𝐴 · 𝐵))
109oveq1d 7150 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
118, 10eqeq12d 2814 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
12 oveq2 7143 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐵 + [⟨𝑣, 𝑢⟩] ) = (𝐵 + 𝐶))
1312oveq2d 7151 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + 𝐶)))
14 oveq2 7143 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · [⟨𝑣, 𝑢⟩] ) = (𝐴 · 𝐶))
1514oveq2d 7151 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1613, 15eqeq12d 2814 . 2 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))))
17 ecovdi.10 . . . 4 𝐻 = 𝐾
18 ecovdi.11 . . . 4 𝐽 = 𝐿
19 opeq12 4767 . . . . 5 ((𝐻 = 𝐾𝐽 = 𝐿) → ⟨𝐻, 𝐽⟩ = ⟨𝐾, 𝐿⟩)
2019eceq1d 8311 . . . 4 ((𝐻 = 𝐾𝐽 = 𝐿) → [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩] )
2117, 18, 20mp2an 691 . . 3 [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩]
22 ecovdi.2 . . . . . . 7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
2322oveq2d 7151 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
2423adantl 485 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
25 ecovdi.7 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
26 ecovdi.3 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2725, 26sylan2 595 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2824, 27eqtrd 2833 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
29283impb 1112 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
30 ecovdi.4 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
31 ecovdi.5 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
3230, 31oveqan12d 7154 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ))
33 ecovdi.8 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
34 ecovdi.9 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
35 ecovdi.6 . . . . . 6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3633, 34, 35syl2an 598 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3732, 36eqtrd 2833 . . . 4 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
38373impdi 1347 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
3921, 29, 383eqtr4a 2859 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )))
401, 6, 11, 16, 393ecoptocl 8372 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cop 4531   × cxp 5517  (class class class)co 7135  [cec 8270   / cqs 8271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fv 6332  df-ov 7138  df-ec 8274  df-qs 8278
This theorem is referenced by:  distrsr  10502  axdistr  10569
  Copyright terms: Public domain W3C validator