MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmulgcd Structured version   Visualization version   GIF version

Theorem absmulgcd 16568
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 16525 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 nn0re 12510 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ)
3 nn0ge0 12526 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 gcd 𝑁))
42, 3absidd 15441 . . . . 5 ((𝑀 gcd 𝑁) ∈ ℕ0 → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
51, 4syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
65oveq2d 7421 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
763adant1 1130 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
8 zcn 12593 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
91nn0cnd 12564 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
10 absmul 15313 . . . 4 ((𝐾 ∈ ℂ ∧ (𝑀 gcd 𝑁) ∈ ℂ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
118, 9, 10syl2an 596 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
12113impb 1114 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
13 zcn 12593 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 12593 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 absmul 15313 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (abs‘(𝐾 · 𝑀)) = ((abs‘𝐾) · (abs‘𝑀)))
16 absmul 15313 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝐾 · 𝑁)) = ((abs‘𝐾) · (abs‘𝑁)))
1715, 16oveqan12d 7424 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
18173impdi 1351 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
198, 13, 14, 18syl3an 1160 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
20 zmulcl 12641 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21 zmulcl 12641 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
22 gcdabs 16550 . . . . . 6 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
2320, 21, 22syl2an 596 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
24233impdi 1351 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
25 nn0abscl 15331 . . . . 5 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℕ0)
26 zabscl 15332 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
27 zabscl 15332 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
28 mulgcd 16567 . . . . 5 (((abs‘𝐾) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℤ ∧ (abs‘𝑁) ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
2925, 26, 27, 28syl3an 1160 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
3019, 24, 293eqtr3d 2778 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
31 gcdabs 16550 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
32313adant1 1130 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
3332oveq2d 7421 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
3430, 33eqtrd 2770 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
357, 12, 343eqtr4rd 2781 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127   · cmul 11134  0cn0 12501  cz 12588  abscabs 15253   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator