MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmulgcd Structured version   Visualization version   GIF version

Theorem absmulgcd 15646
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 15608 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 nn0re 11635 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ)
3 nn0ge0 11652 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 gcd 𝑁))
42, 3absidd 14545 . . . . 5 ((𝑀 gcd 𝑁) ∈ ℕ0 → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
51, 4syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
65oveq2d 6926 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
763adant1 1164 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
8 zcn 11716 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
91nn0cnd 11687 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
10 absmul 14418 . . . 4 ((𝐾 ∈ ℂ ∧ (𝑀 gcd 𝑁) ∈ ℂ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
118, 9, 10syl2an 589 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
12113impb 1147 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
13 zcn 11716 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 11716 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 absmul 14418 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (abs‘(𝐾 · 𝑀)) = ((abs‘𝐾) · (abs‘𝑀)))
16 absmul 14418 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝐾 · 𝑁)) = ((abs‘𝐾) · (abs‘𝑁)))
1715, 16oveqan12d 6929 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
18173impdi 1463 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
198, 13, 14, 18syl3an 1203 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
20 zmulcl 11761 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21 zmulcl 11761 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
22 gcdabs 15630 . . . . . 6 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
2320, 21, 22syl2an 589 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
24233impdi 1463 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
25 nn0abscl 14436 . . . . 5 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℕ0)
26 zabscl 14437 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
27 zabscl 14437 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
28 mulgcd 15645 . . . . 5 (((abs‘𝐾) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℤ ∧ (abs‘𝑁) ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
2925, 26, 27, 28syl3an 1203 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
3019, 24, 293eqtr3d 2869 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
31 gcdabs 15630 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
32313adant1 1164 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
3332oveq2d 6926 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
3430, 33eqtrd 2861 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
357, 12, 343eqtr4rd 2872 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  cc 10257   · cmul 10264  0cn0 11625  cz 11711  abscabs 14358   gcd cgcd 15596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-dvds 15365  df-gcd 15597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator