HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopmul2i Structured version   Visualization version   GIF version

Theorem leopmul2i 30726
Description: Scalar product applied to operator ordering. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopmul2i (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (0 ≤ 𝐴𝑇op 𝑈)) → (𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈))

Proof of Theorem leopmul2i
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → 𝐴 ∈ ℝ)
2 hmopd 30613 . . . . . . 7 ((𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → (𝑈op 𝑇) ∈ HrmOp)
32ancoms 459 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑈op 𝑇) ∈ HrmOp)
433adant1 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑈op 𝑇) ∈ HrmOp)
5 leopmuli 30724 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑈op 𝑇) ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hopop (𝑈op 𝑇))) → 0hopop (𝐴 ·op (𝑈op 𝑇)))
65exp32 421 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑈op 𝑇) ∈ HrmOp) → (0 ≤ 𝐴 → ( 0hopop (𝑈op 𝑇) → 0hopop (𝐴 ·op (𝑈op 𝑇)))))
71, 4, 6syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (0 ≤ 𝐴 → ( 0hopop (𝑈op 𝑇) → 0hopop (𝐴 ·op (𝑈op 𝑇)))))
87imp 407 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 0 ≤ 𝐴) → ( 0hopop (𝑈op 𝑇) → 0hopop (𝐴 ·op (𝑈op 𝑇))))
9 leop3 30716 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇op 𝑈 ↔ 0hopop (𝑈op 𝑇)))
1093adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇op 𝑈 ↔ 0hopop (𝑈op 𝑇)))
1110adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 0 ≤ 𝐴) → (𝑇op 𝑈 ↔ 0hopop (𝑈op 𝑇)))
12 hmopm 30612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
13 hmopm 30612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑈 ∈ HrmOp) → (𝐴 ·op 𝑈) ∈ HrmOp)
14 leop3 30716 . . . . . . 7 (((𝐴 ·op 𝑇) ∈ HrmOp ∧ (𝐴 ·op 𝑈) ∈ HrmOp) → ((𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈) ↔ 0hopop ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇))))
1512, 13, 14syl2an 596 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝐴 ∈ ℝ ∧ 𝑈 ∈ HrmOp)) → ((𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈) ↔ 0hopop ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇))))
16153impdi 1349 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈) ↔ 0hopop ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇))))
17 recn 11054 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 hmopf 30465 . . . . . . . 8 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
19 hmopf 30465 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
20 hosubdi 30399 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝑈op 𝑇)) = ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇)))
2117, 18, 19, 20syl3an 1159 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op (𝑈op 𝑇)) = ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇)))
22213com23 1125 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝐴 ·op (𝑈op 𝑇)) = ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇)))
2322breq2d 5101 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ( 0hopop (𝐴 ·op (𝑈op 𝑇)) ↔ 0hopop ((𝐴 ·op 𝑈) −op (𝐴 ·op 𝑇))))
2416, 23bitr4d 281 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈) ↔ 0hopop (𝐴 ·op (𝑈op 𝑇))))
2524adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 0 ≤ 𝐴) → ((𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈) ↔ 0hopop (𝐴 ·op (𝑈op 𝑇))))
268, 11, 253imtr4d 293 . 2 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 0 ≤ 𝐴) → (𝑇op 𝑈 → (𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈)))
2726impr 455 1 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (0 ≤ 𝐴𝑇op 𝑈)) → (𝐴 ·op 𝑇) ≤op (𝐴 ·op 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5089  wf 6469  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964  cle 11103  chba 29510   ·op chot 29530  op chod 29531   0hop ch0o 29534  HrmOpcho 29541  op cleo 29549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cc 10284  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044  ax-hilex 29590  ax-hfvadd 29591  ax-hvcom 29592  ax-hvass 29593  ax-hv0cl 29594  ax-hvaddid 29595  ax-hfvmul 29596  ax-hvmulid 29597  ax-hvmulass 29598  ax-hvdistr1 29599  ax-hvdistr2 29600  ax-hvmul0 29601  ax-hfi 29670  ax-his1 29673  ax-his2 29674  ax-his3 29675  ax-his4 29676  ax-hcompl 29793
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-omul 8364  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-acn 9791  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-fl 13605  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-rlim 15289  df-sum 15489  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-mulg 18789  df-cntz 19011  df-cmn 19475  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-fbas 20692  df-fg 20693  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-nei 22347  df-cn 22476  df-cnp 22477  df-lm 22478  df-haus 22564  df-tx 22811  df-hmeo 23004  df-fil 23095  df-fm 23187  df-flim 23188  df-flf 23189  df-xms 23571  df-ms 23572  df-tms 23573  df-cfil 24517  df-cau 24518  df-cmet 24519  df-grpo 29084  df-gid 29085  df-ginv 29086  df-gdiv 29087  df-ablo 29136  df-vc 29150  df-nv 29183  df-va 29186  df-ba 29187  df-sm 29188  df-0v 29189  df-vs 29190  df-nmcv 29191  df-ims 29192  df-dip 29292  df-ssp 29313  df-ph 29404  df-cbn 29454  df-hnorm 29559  df-hba 29560  df-hvsub 29562  df-hlim 29563  df-hcau 29564  df-sh 29798  df-ch 29812  df-oc 29843  df-ch0 29844  df-shs 29899  df-pjh 29986  df-hosum 30321  df-homul 30322  df-hodif 30323  df-h0op 30339  df-hmop 30435  df-leop 30443
This theorem is referenced by:  nmopleid  30730
  Copyright terms: Public domain W3C validator