MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacan Structured version   Visualization version   GIF version

Theorem oacan 8499
Description: Left cancellation law for ordinal addition. Corollary 8.5 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oacan ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem oacan
StepHypRef Expression
1 oaord 8498 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)))
213comr 1126 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)))
3 oaord 8498 . . . . 5 ((𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐶𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))
433com13 1125 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))
52, 4orbi12d 918 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶𝐶𝐵) ↔ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))))
65notbid 318 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵𝐶𝐶𝐵) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))))
7 eloni 6331 . . . 4 (𝐵 ∈ On → Ord 𝐵)
8 eloni 6331 . . . 4 (𝐶 ∈ On → Ord 𝐶)
9 ordtri3 6357 . . . 4 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
107, 8, 9syl2an 597 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
11103adant1 1131 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
12 oacl 8485 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
13 eloni 6331 . . . . 5 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
1412, 13syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
15 oacl 8485 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +o 𝐶) ∈ On)
16 eloni 6331 . . . . 5 ((𝐴 +o 𝐶) ∈ On → Ord (𝐴 +o 𝐶))
1715, 16syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 +o 𝐶))
18 ordtri3 6357 . . . 4 ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐴 +o 𝐶)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))))
1914, 17, 18syl2an 597 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))))
20193impdi 1351 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))))
216, 11, 203bitr4rd 312 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  Ord word 6320  Oncon0 6321  (class class class)co 7361   +o coa 8413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-oadd 8420
This theorem is referenced by:  oawordeulem  8505
  Copyright terms: Public domain W3C validator