![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacan | Structured version Visualization version GIF version |
Description: Left cancellation law for ordinal addition. Corollary 8.5 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.) |
Ref | Expression |
---|---|
oacan | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 8535 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1126 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) |
3 | oaord 8535 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))) | |
4 | 3 | 3com13 1125 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))) |
5 | 2, 4 | orbi12d 918 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
6 | 5 | notbid 318 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
7 | eloni 6366 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
8 | eloni 6366 | . . . 4 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
9 | ordtri3 6392 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | |
10 | 7, 8, 9 | syl2an 597 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
11 | 10 | 3adant1 1131 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
12 | oacl 8522 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | |
13 | eloni 6366 | . . . . 5 ⊢ ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵)) |
15 | oacl 8522 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +o 𝐶) ∈ On) | |
16 | eloni 6366 | . . . . 5 ⊢ ((𝐴 +o 𝐶) ∈ On → Ord (𝐴 +o 𝐶)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 +o 𝐶)) |
18 | ordtri3 6392 | . . . 4 ⊢ ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐴 +o 𝐶)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) | |
19 | 14, 17, 18 | syl2an 597 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
20 | 19 | 3impdi 1351 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
21 | 6, 11, 20 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Ord word 6355 Oncon0 6356 (class class class)co 7396 +o coa 8450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-oadd 8457 |
This theorem is referenced by: oawordeulem 8542 tfsconcatrn 41963 |
Copyright terms: Public domain | W3C validator |