![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacan | Structured version Visualization version GIF version |
Description: Left cancellation law for ordinal addition. Corollary 8.5 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.) |
Ref | Expression |
---|---|
oacan | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 7911 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1116 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) |
3 | oaord 7911 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))) | |
4 | 3 | 3com13 1115 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵))) |
5 | 2, 4 | orbi12d 905 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
6 | 5 | notbid 310 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
7 | eloni 5986 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
8 | eloni 5986 | . . . 4 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
9 | ordtri3 6012 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | |
10 | 7, 8, 9 | syl2an 589 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
11 | 10 | 3adant1 1121 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
12 | oacl 7899 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | |
13 | eloni 5986 | . . . . 5 ⊢ ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵)) |
15 | oacl 7899 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +o 𝐶) ∈ On) | |
16 | eloni 5986 | . . . . 5 ⊢ ((𝐴 +o 𝐶) ∈ On → Ord (𝐴 +o 𝐶)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 +o 𝐶)) |
18 | ordtri3 6012 | . . . 4 ⊢ ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐴 +o 𝐶)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) | |
19 | 14, 17, 18 | syl2an 589 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
20 | 19 | 3impdi 1412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶) ∨ (𝐴 +o 𝐶) ∈ (𝐴 +o 𝐵)))) |
21 | 6, 11, 20 | 3bitr4rd 304 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 836 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Ord word 5975 Oncon0 5976 (class class class)co 6922 +o coa 7840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-oadd 7847 |
This theorem is referenced by: oawordeulem 7918 |
Copyright terms: Public domain | W3C validator |