MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Visualization version   GIF version

Theorem omcan 8586
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem omcan
StepHypRef Expression
1 omordi 8583 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
21ex 412 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
32ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
433adant2 1131 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
54imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
6 omordi 8583 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
76ex 412 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
87ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
983adant3 1132 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
109imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
115, 10orim12d 966 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
1211con3d 152 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
13 omcl 8553 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
14 eloni 6367 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵))
16 omcl 8553 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐶) ∈ On)
17 eloni 6367 . . . . . . 7 ((𝐴 ·o 𝐶) ∈ On → Ord (𝐴 ·o 𝐶))
1816, 17syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 ·o 𝐶))
19 ordtri3 6393 . . . . . 6 ((Ord (𝐴 ·o 𝐵) ∧ Ord (𝐴 ·o 𝐶)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2015, 18, 19syl2an 596 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
21203impdi 1351 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2221adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
23 eloni 6367 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
24 eloni 6367 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
25 ordtri3 6393 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2623, 24, 25syl2an 596 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
27263adant1 1130 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2827adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2912, 22, 283imtr4d 294 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
30 oveq2 7418 . 2 (𝐵 = 𝐶 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))
3129, 30impbid1 225 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  c0 4313  Ord word 6356  Oncon0 6357  (class class class)co 7410   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490
This theorem is referenced by:  omword  8587  fin1a2lem4  10422
  Copyright terms: Public domain W3C validator