MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Visualization version   GIF version

Theorem omcan 8484
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem omcan
StepHypRef Expression
1 omordi 8481 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
21ex 412 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
32ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
433adant2 1131 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
54imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
6 omordi 8481 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
76ex 412 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
87ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
983adant3 1132 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
109imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
115, 10orim12d 966 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
1211con3d 152 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
13 omcl 8451 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
14 eloni 6316 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵))
16 omcl 8451 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐶) ∈ On)
17 eloni 6316 . . . . . . 7 ((𝐴 ·o 𝐶) ∈ On → Ord (𝐴 ·o 𝐶))
1816, 17syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 ·o 𝐶))
19 ordtri3 6342 . . . . . 6 ((Ord (𝐴 ·o 𝐵) ∧ Ord (𝐴 ·o 𝐶)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2015, 18, 19syl2an 596 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
21203impdi 1351 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2221adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
23 eloni 6316 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
24 eloni 6316 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
25 ordtri3 6342 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2623, 24, 25syl2an 596 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
27263adant1 1130 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2827adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2912, 22, 283imtr4d 294 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
30 oveq2 7354 . 2 (𝐵 = 𝐶 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))
3129, 30impbid1 225 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  c0 4283  Ord word 6305  Oncon0 6306  (class class class)co 7346   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-omul 8390
This theorem is referenced by:  omword  8485  fin1a2lem4  10294
  Copyright terms: Public domain W3C validator