MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Visualization version   GIF version

Theorem omcan 8606
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem omcan
StepHypRef Expression
1 omordi 8603 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
21ex 412 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
32ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
433adant2 1130 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
54imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
6 omordi 8603 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
76ex 412 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
87ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
983adant3 1131 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
109imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
115, 10orim12d 966 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
1211con3d 152 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
13 omcl 8573 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
14 eloni 6396 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵))
16 omcl 8573 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐶) ∈ On)
17 eloni 6396 . . . . . . 7 ((𝐴 ·o 𝐶) ∈ On → Ord (𝐴 ·o 𝐶))
1816, 17syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 ·o 𝐶))
19 ordtri3 6422 . . . . . 6 ((Ord (𝐴 ·o 𝐵) ∧ Ord (𝐴 ·o 𝐶)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2015, 18, 19syl2an 596 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
21203impdi 1349 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2221adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
23 eloni 6396 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
24 eloni 6396 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
25 ordtri3 6422 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2623, 24, 25syl2an 596 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
27263adant1 1129 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2827adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2912, 22, 283imtr4d 294 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
30 oveq2 7439 . 2 (𝐵 = 𝐶 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))
3129, 30impbid1 225 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  c0 4339  Ord word 6385  Oncon0 6386  (class class class)co 7431   ·o comu 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509  df-omul 8510
This theorem is referenced by:  omword  8607  fin1a2lem4  10441
  Copyright terms: Public domain W3C validator