MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Visualization version   GIF version

Theorem omcan 8362
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem omcan
StepHypRef Expression
1 omordi 8359 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
21ex 412 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
32ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
433adant2 1129 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))))
54imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
6 omordi 8359 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
76ex 412 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
87ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
983adant3 1130 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
109imp 406 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)))
115, 10orim12d 961 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
1211con3d 152 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
13 omcl 8328 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
14 eloni 6261 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵))
16 omcl 8328 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐶) ∈ On)
17 eloni 6261 . . . . . . 7 ((𝐴 ·o 𝐶) ∈ On → Ord (𝐴 ·o 𝐶))
1816, 17syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 ·o 𝐶))
19 ordtri3 6287 . . . . . 6 ((Ord (𝐴 ·o 𝐵) ∧ Ord (𝐴 ·o 𝐶)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2015, 18, 19syl2an 595 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
21203impdi 1348 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
2221adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ¬ ((𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶) ∨ (𝐴 ·o 𝐶) ∈ (𝐴 ·o 𝐵))))
23 eloni 6261 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
24 eloni 6261 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
25 ordtri3 6287 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2623, 24, 25syl2an 595 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
27263adant1 1128 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2827adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2912, 22, 283imtr4d 293 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
30 oveq2 7263 . 2 (𝐵 = 𝐶 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))
3129, 30impbid1 224 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  c0 4253  Ord word 6250  Oncon0 6251  (class class class)co 7255   ·o comu 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272
This theorem is referenced by:  omword  8363  fin1a2lem4  10090
  Copyright terms: Public domain W3C validator