MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem14 Structured version   Visualization version   GIF version

Theorem axlowdimlem14 27368
Description: Lemma for axlowdim 27374. Take two possible 𝑄 from axlowdimlem10 27364. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem14.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem14.2 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem14 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))

Proof of Theorem axlowdimlem14
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 axlowdimlem14.1 . . . . . . 7 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21axlowdimlem10 27364 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
3 elee 27307 . . . . . . 7 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
43adantr 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
52, 4mpbid 231 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
65ffnd 6631 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 Fn (1...𝑁))
7 axlowdimlem14.2 . . . . . . 7 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
87axlowdimlem10 27364 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 ∈ (𝔼‘𝑁))
9 elee 27307 . . . . . . 7 (𝑁 ∈ ℕ → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
109adantr 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
118, 10mpbid 231 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅:(1...𝑁)⟶ℝ)
1211ffnd 6631 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 Fn (1...𝑁))
13 eqfnfv 6941 . . . 4 ((𝑄 Fn (1...𝑁) ∧ 𝑅 Fn (1...𝑁)) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
146, 12, 13syl2an 597 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) ∧ (𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1)))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
15143impdi 1350 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
16 fznatpl1 13356 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
17163adant3 1132 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
18 ax-1ne0 10986 . . . . . . . 8 1 ≠ 0
1918a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → 1 ≠ 0)
201axlowdimlem11 27365 . . . . . . . 8 (𝑄‘(𝐼 + 1)) = 1
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) = 1)
22 elfzelz 13302 . . . . . . . . . . . . 13 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
2322zcnd 12473 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℂ)
24 elfzelz 13302 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℤ)
2524zcnd 12473 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℂ)
26 ax-1cn 10975 . . . . . . . . . . . . 13 1 ∈ ℂ
27 addcan2 11206 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2826, 27mp3an3 1450 . . . . . . . . . . . 12 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2923, 25, 28syl2an 597 . . . . . . . . . . 11 ((𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
30293adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3130necon3bid 2986 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≠ (𝐽 + 1) ↔ 𝐼𝐽))
3231biimpar 479 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝐼 + 1) ≠ (𝐽 + 1))
337axlowdimlem12 27366 . . . . . . . 8 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝐼 + 1) ≠ (𝐽 + 1)) → (𝑅‘(𝐼 + 1)) = 0)
3417, 32, 33syl2an2r 683 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑅‘(𝐼 + 1)) = 0)
3519, 21, 343netr4d 3019 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))
36 df-ne 2942 . . . . . . . 8 ((𝑄𝑖) ≠ (𝑅𝑖) ↔ ¬ (𝑄𝑖) = (𝑅𝑖))
37 fveq2 6804 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = (𝑄‘(𝐼 + 1)))
38 fveq2 6804 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑅𝑖) = (𝑅‘(𝐼 + 1)))
3937, 38neeq12d 3003 . . . . . . . 8 (𝑖 = (𝐼 + 1) → ((𝑄𝑖) ≠ (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4036, 39bitr3id 285 . . . . . . 7 (𝑖 = (𝐼 + 1) → (¬ (𝑄𝑖) = (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4140rspcev 3566 . . . . . 6 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4217, 35, 41syl2an2r 683 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4342ex 414 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼𝐽 → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖)))
44 df-ne 2942 . . . 4 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
45 rexnal 3100 . . . 4 (∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖) ↔ ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖))
4643, 44, 453imtr3g 295 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (¬ 𝐼 = 𝐽 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
4746con4d 115 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖) → 𝐼 = 𝐽))
4815, 47sylbid 239 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  cdif 3889  cun 3890  {csn 4565  cop 4571   × cxp 5598   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  cc 10915  cr 10916  0cc0 10917  1c1 10918   + caddc 10920  cmin 11251  cn 12019  ...cfz 13285  𝔼cee 27301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-ee 27304
This theorem is referenced by:  axlowdimlem15  27369
  Copyright terms: Public domain W3C validator