MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem14 Structured version   Visualization version   GIF version

Theorem axlowdimlem14 26735
Description: Lemma for axlowdim 26741. Take two possible 𝑄 from axlowdimlem10 26731. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem14.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem14.2 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem14 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))

Proof of Theorem axlowdimlem14
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 axlowdimlem14.1 . . . . . . 7 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21axlowdimlem10 26731 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
3 elee 26674 . . . . . . 7 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
43adantr 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
52, 4mpbid 234 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
65ffnd 6509 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 Fn (1...𝑁))
7 axlowdimlem14.2 . . . . . . 7 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
87axlowdimlem10 26731 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 ∈ (𝔼‘𝑁))
9 elee 26674 . . . . . . 7 (𝑁 ∈ ℕ → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
109adantr 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
118, 10mpbid 234 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅:(1...𝑁)⟶ℝ)
1211ffnd 6509 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 Fn (1...𝑁))
13 eqfnfv 6796 . . . 4 ((𝑄 Fn (1...𝑁) ∧ 𝑅 Fn (1...𝑁)) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
146, 12, 13syl2an 597 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) ∧ (𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1)))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
15143impdi 1346 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
16 fznatpl1 12955 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
17163adant3 1128 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
18 ax-1ne0 10600 . . . . . . . 8 1 ≠ 0
1918a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → 1 ≠ 0)
201axlowdimlem11 26732 . . . . . . . 8 (𝑄‘(𝐼 + 1)) = 1
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) = 1)
22 elfzelz 12902 . . . . . . . . . . . . 13 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
2322zcnd 12082 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℂ)
24 elfzelz 12902 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℤ)
2524zcnd 12082 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℂ)
26 ax-1cn 10589 . . . . . . . . . . . . 13 1 ∈ ℂ
27 addcan2 10819 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2826, 27mp3an3 1446 . . . . . . . . . . . 12 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2923, 25, 28syl2an 597 . . . . . . . . . . 11 ((𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
30293adant1 1126 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3130necon3bid 3060 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≠ (𝐽 + 1) ↔ 𝐼𝐽))
3231biimpar 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝐼 + 1) ≠ (𝐽 + 1))
337axlowdimlem12 26733 . . . . . . . 8 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝐼 + 1) ≠ (𝐽 + 1)) → (𝑅‘(𝐼 + 1)) = 0)
3417, 32, 33syl2an2r 683 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑅‘(𝐼 + 1)) = 0)
3519, 21, 343netr4d 3093 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))
36 df-ne 3017 . . . . . . . 8 ((𝑄𝑖) ≠ (𝑅𝑖) ↔ ¬ (𝑄𝑖) = (𝑅𝑖))
37 fveq2 6664 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = (𝑄‘(𝐼 + 1)))
38 fveq2 6664 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑅𝑖) = (𝑅‘(𝐼 + 1)))
3937, 38neeq12d 3077 . . . . . . . 8 (𝑖 = (𝐼 + 1) → ((𝑄𝑖) ≠ (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4036, 39syl5bbr 287 . . . . . . 7 (𝑖 = (𝐼 + 1) → (¬ (𝑄𝑖) = (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4140rspcev 3622 . . . . . 6 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4217, 35, 41syl2an2r 683 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4342ex 415 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼𝐽 → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖)))
44 df-ne 3017 . . . 4 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
45 rexnal 3238 . . . 4 (∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖) ↔ ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖))
4643, 44, 453imtr3g 297 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (¬ 𝐼 = 𝐽 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
4746con4d 115 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖) → 𝐼 = 𝐽))
4815, 47sylbid 242 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  cun 3933  {csn 4560  cop 4566   × cxp 5547   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cn 11632  ...cfz 12886  𝔼cee 26668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-ee 26671
This theorem is referenced by:  axlowdimlem15  26736
  Copyright terms: Public domain W3C validator