MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem14 Structured version   Visualization version   GIF version

Theorem axlowdimlem14 28939
Description: Lemma for axlowdim 28945. Take two possible 𝑄 from axlowdimlem10 28935. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem14.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem14.2 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem14 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))

Proof of Theorem axlowdimlem14
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 axlowdimlem14.1 . . . . . . 7 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21axlowdimlem10 28935 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
3 elee 28878 . . . . . . 7 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
43adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
52, 4mpbid 232 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
65ffnd 6712 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 Fn (1...𝑁))
7 axlowdimlem14.2 . . . . . . 7 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
87axlowdimlem10 28935 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 ∈ (𝔼‘𝑁))
9 elee 28878 . . . . . . 7 (𝑁 ∈ ℕ → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
109adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
118, 10mpbid 232 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅:(1...𝑁)⟶ℝ)
1211ffnd 6712 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 Fn (1...𝑁))
13 eqfnfv 7026 . . . 4 ((𝑄 Fn (1...𝑁) ∧ 𝑅 Fn (1...𝑁)) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
146, 12, 13syl2an 596 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) ∧ (𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1)))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
15143impdi 1351 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
16 fznatpl1 13600 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
17163adant3 1132 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
18 ax-1ne0 11203 . . . . . . . 8 1 ≠ 0
1918a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → 1 ≠ 0)
201axlowdimlem11 28936 . . . . . . . 8 (𝑄‘(𝐼 + 1)) = 1
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) = 1)
22 elfzelz 13546 . . . . . . . . . . . . 13 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
2322zcnd 12703 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℂ)
24 elfzelz 13546 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℤ)
2524zcnd 12703 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℂ)
26 ax-1cn 11192 . . . . . . . . . . . . 13 1 ∈ ℂ
27 addcan2 11425 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2826, 27mp3an3 1452 . . . . . . . . . . . 12 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
2923, 25, 28syl2an 596 . . . . . . . . . . 11 ((𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
30293adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3130necon3bid 2977 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≠ (𝐽 + 1) ↔ 𝐼𝐽))
3231biimpar 477 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝐼 + 1) ≠ (𝐽 + 1))
337axlowdimlem12 28937 . . . . . . . 8 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝐼 + 1) ≠ (𝐽 + 1)) → (𝑅‘(𝐼 + 1)) = 0)
3417, 32, 33syl2an2r 685 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑅‘(𝐼 + 1)) = 0)
3519, 21, 343netr4d 3010 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))
36 df-ne 2934 . . . . . . . 8 ((𝑄𝑖) ≠ (𝑅𝑖) ↔ ¬ (𝑄𝑖) = (𝑅𝑖))
37 fveq2 6881 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = (𝑄‘(𝐼 + 1)))
38 fveq2 6881 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑅𝑖) = (𝑅‘(𝐼 + 1)))
3937, 38neeq12d 2994 . . . . . . . 8 (𝑖 = (𝐼 + 1) → ((𝑄𝑖) ≠ (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4036, 39bitr3id 285 . . . . . . 7 (𝑖 = (𝐼 + 1) → (¬ (𝑄𝑖) = (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4140rspcev 3606 . . . . . 6 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4217, 35, 41syl2an2r 685 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4342ex 412 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼𝐽 → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖)))
44 df-ne 2934 . . . 4 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
45 rexnal 3090 . . . 4 (∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖) ↔ ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖))
4643, 44, 453imtr3g 295 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (¬ 𝐼 = 𝐽 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
4746con4d 115 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖) → 𝐼 = 𝐽))
4815, 47sylbid 240 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  cun 3929  {csn 4606  cop 4612   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  cn 12245  ...cfz 13529  𝔼cee 28872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-ee 28875
This theorem is referenced by:  axlowdimlem15  28940
  Copyright terms: Public domain W3C validator