Step | Hyp | Ref
| Expression |
1 | | axlowdimlem14.1 |
. . . . . . 7
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
2 | 1 | axlowdimlem10 27364 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
3 | | elee 27307 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) |
4 | 3 | adantr 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) |
5 | 2, 4 | mpbid 231 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ) |
6 | 5 | ffnd 6631 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 Fn (1...𝑁)) |
7 | | axlowdimlem14.2 |
. . . . . . 7
⊢ 𝑅 = ({〈(𝐽 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0})) |
8 | 7 | axlowdimlem10 27364 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 ∈ (𝔼‘𝑁)) |
9 | | elee 27307 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ)) |
10 | 9 | adantr 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ)) |
11 | 8, 10 | mpbid 231 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅:(1...𝑁)⟶ℝ) |
12 | 11 | ffnd 6631 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 Fn (1...𝑁)) |
13 | | eqfnfv 6941 |
. . . 4
⊢ ((𝑄 Fn (1...𝑁) ∧ 𝑅 Fn (1...𝑁)) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖))) |
14 | 6, 12, 13 | syl2an 597 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) ∧ (𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1)))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖))) |
15 | 14 | 3impdi 1350 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖))) |
16 | | fznatpl1 13356 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
17 | 16 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
18 | | ax-1ne0 10986 |
. . . . . . . 8
⊢ 1 ≠
0 |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → 1 ≠ 0) |
20 | 1 | axlowdimlem11 27365 |
. . . . . . . 8
⊢ (𝑄‘(𝐼 + 1)) = 1 |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → (𝑄‘(𝐼 + 1)) = 1) |
22 | | elfzelz 13302 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ) |
23 | 22 | zcnd 12473 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℂ) |
24 | | elfzelz 13302 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℤ) |
25 | 24 | zcnd 12473 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℂ) |
26 | | ax-1cn 10975 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
27 | | addcan2 11206 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐼 + 1) =
(𝐽 + 1) ↔ 𝐼 = 𝐽)) |
28 | 26, 27 | mp3an3 1450 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽)) |
29 | 23, 25, 28 | syl2an 597 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽)) |
30 | 29 | 3adant1 1130 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽)) |
31 | 30 | necon3bid 2986 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≠ (𝐽 + 1) ↔ 𝐼 ≠ 𝐽)) |
32 | 31 | biimpar 479 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → (𝐼 + 1) ≠ (𝐽 + 1)) |
33 | 7 | axlowdimlem12 27366 |
. . . . . . . 8
⊢ (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝐼 + 1) ≠ (𝐽 + 1)) → (𝑅‘(𝐼 + 1)) = 0) |
34 | 17, 32, 33 | syl2an2r 683 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → (𝑅‘(𝐼 + 1)) = 0) |
35 | 19, 21, 34 | 3netr4d 3019 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) |
36 | | df-ne 2942 |
. . . . . . . 8
⊢ ((𝑄‘𝑖) ≠ (𝑅‘𝑖) ↔ ¬ (𝑄‘𝑖) = (𝑅‘𝑖)) |
37 | | fveq2 6804 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼 + 1) → (𝑄‘𝑖) = (𝑄‘(𝐼 + 1))) |
38 | | fveq2 6804 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼 + 1) → (𝑅‘𝑖) = (𝑅‘(𝐼 + 1))) |
39 | 37, 38 | neeq12d 3003 |
. . . . . . . 8
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖) ≠ (𝑅‘𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))) |
40 | 36, 39 | bitr3id 285 |
. . . . . . 7
⊢ (𝑖 = (𝐼 + 1) → (¬ (𝑄‘𝑖) = (𝑅‘𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))) |
41 | 40 | rspcev 3566 |
. . . . . 6
⊢ (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄‘𝑖) = (𝑅‘𝑖)) |
42 | 17, 35, 41 | syl2an2r 683 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≠ 𝐽) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄‘𝑖) = (𝑅‘𝑖)) |
43 | 42 | ex 414 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 ≠ 𝐽 → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄‘𝑖) = (𝑅‘𝑖))) |
44 | | df-ne 2942 |
. . . 4
⊢ (𝐼 ≠ 𝐽 ↔ ¬ 𝐼 = 𝐽) |
45 | | rexnal 3100 |
. . . 4
⊢
(∃𝑖 ∈
(1...𝑁) ¬ (𝑄‘𝑖) = (𝑅‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖)) |
46 | 43, 44, 45 | 3imtr3g 295 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (¬ 𝐼 = 𝐽 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖))) |
47 | 46 | con4d 115 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (𝑅‘𝑖) → 𝐼 = 𝐽)) |
48 | 15, 47 | sylbid 239 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 → 𝐼 = 𝐽)) |